ZigBee IP update
IETF 85 Atlanta

Robert Cragie
robert.cragie@gridmerge.com
Introduction

- ZigBee IP is a “super” specification for an IPv6 stack
 - Umbrella specification for a set of IETF RFCs
- Aimed at 802.15.4 MAC/PHY devices
- Mesh network (multi-hop)
- Developed primarily for SEP 2.0 (Smart Energy Profile) application layer traffic to aid migration from SEP 1.0
- Certifiable platform
 - PICS and Test Plan
Transport layer

- TCP
 - Data plane
 - HTTP
 - HTTPS
- UDP
 - Control plane
 - PANA, MLE
 - Data plane
 - CoAP
 - Not currently proposed for SEP 2.0
 - Maybe used in other application profiles
Network Layer

• IPv6
 – RFC 2460
 – Not using IPv4
• 6LoWPAN adaptation layer
 – RFC 4944 (IPv6 over 802.15.4)
 – RFC 6282 (header compression)
• Stateless address autoconfiguration (SLAAC)
 – RFC 4862
 – Maps IPv6 addresses to link layer addresses
 – 16 and 64 bit MAC addresses
• 6LoWPAN contexts
 – ULA and/or global prefixes
Neighbor discovery

• “Classic” ND
 – RFC 4861
 – Not all features used

• 6LoWPAN ND
 – draft-ietf-6lowpan-nd
 – Extends “classic” ND for LLNs and multi-link subnets
Routing

• RPL
 – RFC 6550
 – Route-over
 – Intermediate routers as well as border router
 – Based on Directed Acyclic Graph (DAG)

• MRHOF objective function
 – RFC 6719

• Trickle multicast
 – draft-ietf-roll-trickle-mcast
Security (1)

• Link layer security
 – 802.15.4 frame security (AES-CCM)
 – Global network key

• PANA (EAP transport)
 – RFC 5191 (PANA)
 – RFC 6345 (PANA relay)
 – draft-yegin-pana-encr-avp (encryption AVP)
 – Carries EAP in UDP datagrams
 – Convenient for 6LoWPAN header compression
Security (2)

- **EAP-TLS (EAP method)**
 - RFC 5216
 - Carries TLS records for authentication and key establishment

- **TLS cipher suites**
 - Pre-shared key with AES-CCM
 - c/w Wi-Fi WPA/WPA2 PSK passphrase
 - Elliptic curve DH and ECDSA with AES-CCM
 - In conjunction with device certificate
Additional IETF protocols developed

• MLE (Mesh Link Establishment)
 – Transfer of link costs between neighbors
 • Improved link costs for RPL metrics
 – Transfer of frame counters between neighbors
 • Freshness checking and nonce consistency
 – Dissemination of network-wide information, e.g. beacon payload, PAN ID, channel

• PANA relay
 – Enables PANA for multihop networks

• PANA encryption extensions
 – Secure delivery of configuration parameters
Implementation

• Can’t give details for commercial reasons
 – 7 independent developers
• Aimed at LWIG class 2 devices
 – ~50 kiB data (RAM), ~250 kiB code (Flash)
 – draft-ietf-lwig-guidance
 – Class 1 devices may be able to act as hosts
 – Some devices have more resources and processing power (e.g. ARM9 core, MiBs RAM/Flash)
• Home-grown OS, embedded Linux
Restrictions to meet resource constraints

- **6LoWPAN** – 4 contexts plus stateless (64-bit and 16-bit address)
- **RPL** – non-storing mode
 - Resources required mainly at DAG root
 - Source routing down the DAG
- **TLS** – only two cipher suites
 - Pre-shared key
 - Elliptic curve for processing speed up and memory saving
- **Buffer restrictions for pending data to sleeping hosts**
Other implementation efficiencies

• Holistic approach to combining protocols
• AES-CCM used universally at many layers
• RPL, ND, MAC all have concepts of neighbors and stored addresses
• Limit the storage by linking tables from different protocols together
• Cross-layer management – more complex API whereby all protocols have access to other data and can use it accordingly
Status December 2012

• Specification virtually complete
 – One or two remaining IDs in the process of becoming RFCs
 – Multicast is last remaining item to finalize
• PICS and Test plan almost complete
 – Additional test cases being developed
• Specification Validation Event (SVE) in January 2013
 – Take all specifications to version 1.0
Next steps for LWIG

• Produce more detailed ID or incorporate in guidance document
 – Aim to start ID or text on completion of SVE