Delay and Loss Traffic Engineering Problem Statement for MPLS

draft-fuxh-mpls-delay-loss-te-problem-statement-01

November 8, 2012

IETF 85, Atlanta

Co-Authors

Xihua Fu ZTE (Editor)

Dave McDysan Verizon (Editor, Presenter)

Vishwas Manral HP

Andrew Malis Verizon

Spencer Giacalone Thomson Reuters

Malcolm Betts ZTE

Qilei Wang ZTE

John Drake Juniper Networks

Overview of this Draft

- Substantial Rewrite of draft-fuxh-mpls-delay-loss-teframework-05 as requested by MPLS Review Team
 - Retained key use cases, problems to be solved and requirements from framework-05
 - Framework related text/concepts retained in framework-06
- Much new text in the following outline
 - Defined context and scope
 - Definitions of performance as used for TE (delay, loss, delay variation)
 - Statement of use cases and problems faced by several classes of operators
 - Defined functional, non(less)-solution oriented requirements and updated references
- Changed Intended Status from Standards Track to Informational

Context and Scope

- (G) MPLS network
- Make a prediction of end-to-end delay, loss and delay variation based upon the current state of this network with acceptable accuracy before an LSP is established
- Single Layer or Potentially multiple layers (e.g., MPLS, OTN)
- Single Domain or Area/Level or Potentially multiple domains or inter-area/level

Terminology & Assumptions

- Service Level Agreement/Specification (SLA/ SLS) and Network Performance Objective (NPO)
- NPO definitions and composition methods from ITU-T Y.1540, Y.1541 used
- NPO measured over interval of minutes
 - Delay = sum of arithmetic average of one-way delay
 - Loss = inversion of successful packet transfer rate
 - Delay Variation = quantile based, sub-additive

Use Case Classes

- Generalized, Performance-Based
 - Delay: wide geography context sensitive to propagation delay, local geography sensitive to nodal delay
 - Loss: different link technology characteristics (e.g., wireless, wifi, wired)
 - Delay Variation (caused primarily by queuing, or packets taking different paths)
- Specific Industry Segment Examples
 - High-Frequency Trading (low delay)
 - Network-based VPN (customer specific SLAs)
 - Cloud-based services (Tradeoff between delay and placement of compute, storage)

Problem Statement

- End-to-end Measurement Insufficient to Support Performance Sensitive LSP Path Placement
- Lower Layer MPLS Networks Unable to Communicate Significant Performance Changes
- No Method to Communicate Significant Node/Link Performance Changes
- Routing Metrics Insufficient to Support Performance Sensitive Path Selection
- LSP Signaling Methods Insufficient to Support Performance Sensitive Path Selection

Functional Requirements

- Augment LSP Requestor Signaling with Performance Parameter Values
 - Minimum possible values or maximum acceptable values
- Specify Criteria for Node and Link Performance Parameter Estimation,
 Measurement Methods
- Support Node Level Performance Information when Needed
 - Not all deployment contexts require this, and/or node performance may be composed with and represented as link performance
- Augment Routing Information with Performance Parameter Estimates
 - Intra and inter-domain
- Augment Signaling Information with Concatenated Estimates
 - Necessary for multiple-domains that do not share node/link performance information
- Define Significant Performance Parameter Change Thresholds and Frequency
 - Respond only to important changes and dampen oscillation

Functional Requirements

- Define Thresholds and Timers for Links with Unusable Performance
 - Useful to declare links/nodes as unacceptable in some contexts
- Communicate Significant Performance Changes between Layers
 - For example, a lower layer (e.g., OTN) server network markedly increases delay by a restoration action and impacts performance of client networks
- Support for Networks with Composite Link
 - Parallel component links in a composite link may have different performance
- Restoration, Protection and Rerouting
 - Desirable feature to selectively reroute based upon performance degradation
- Management and Operational Requirements

Next Steps

- Solicit comments on the wg mailing list (or private comments, suggestions)
- Is the problem more clearly described?
- How many operators see this as a problem?
- Continue to advance as individual draft, or consider wg adoption?
- Which wg?