Applicability of LDP Multi-Topology for Unicast Fast-reroute Using Maximally Redundant Trees draft-li-rtgwg-ldp-mt-mrt-frr-01

Zhenbin Li, Tao Zhou, Quintin Zhao IETF 85, Atlanta, GA, USA

Introduction

- [I-D.ietf-rtgwg-mrt-frr-architecture] describes the architecture based on Maximally Redundant Trees (MRT) to provide 100% coverage for fast-reroute of unicast traffic.
- [I-D.ietf-mpls-ldp-multi-topology] has been proposed to provide unicast forwarding in the MRT FRR architecture.
- This informational draft is to provide the analysis of the applicability of LDP MT for MRT FRR
 - Procedures of LDP MT using for unicast MRT FRR
 - All possible scenarios are analyzed and typical examples are provided.
 - > Applicability guidance is provided.

Procedures

- Routing Calculation: Consistency of all nodes in the network is the most important.
- Label Distribution: LDP will advertise label mapping message with corresponding MT-ID for the specific FEC. There are at least three label bindings for each FEC that are associated with default topology, red topology and blue topology.
- Forwarding Entry Creation: The route calculated based on MRT determines which label binding should be chosen for each FEC in a specific topology. There is not any MT information which should be processed in the forwarding plane.
- Switchover and Re-Convergence: The traffic switches when failure happens. The micro-loop may be produced during the course of reconvergence.
- Switchback: IGP-LDP synchronization can also be used for the default topology to prevent traffic loss.

Considerations

- MRT MT-ID and LDP-MT ID Consistency:
 - •The MRT MT-ID used in IGP is not for routing but just for forwarding and the application to use MRT results, so the application's (LDP-MT) MRT MT-ID should be same with IGP.
- Multiple IGP: Multiple IGPs deploy in one network.
 - It is highly desirable that in one network only one IGP protocol is deployed.
- Policy Control: Policy can be used to reducing labels' usage for MRT FRR.
 - For multi-service network based on VPN, policy can be applied to permit only host addresses to setup LSPs in the default topology.
 - Policy is not recommended to control on LSP in the blue topology and the red topology

Scenarios (1)

- 2-Connected Network: Detailed example shows how LDP MT works for MRT FRR and how tie-breaking policy works.
- Non-2-Connected Network: Highlights how label forwarding entry installs for cut-vertex.
- Proxy Node: Difference between two scenarios are identified.
 - Inter-Area and Inter-AS: End-to-end LSPs
 - Partial Deployment: Proxy egress LSPs
- IP-Only Network: It is recommended that LDP MT should be deployed incrementally for the fast-reroute usage

Scenarios (2)

LDP over TE

(a) Default Topology

(c) Graph II for MRT Computation

2-Connected Network Example

(a) Topology

(b) Blue Topology

Figure 1: 2-Connected Network

According to the MRT calculation, for a specific destination H, there are following paths in different topologies for other nodes,

```
Default Topology
                                                  Blue Topology
      R->A->B->F->G->H
                                                 R->A->B->F->G->H
R
       A \rightarrow B \rightarrow F \rightarrow G \rightarrow H
                                                 A->B->F->G->H
                                                 B->F->G->H
В
      B->F->G->H
                                                C->B->F->G->H
      C \rightarrow B \rightarrow F \rightarrow G \rightarrow H
                                                D->E->R->A->B->F
      D \rightarrow C \rightarrow B \rightarrow F \rightarrow G \rightarrow H
      E \rightarrow D \rightarrow C \rightarrow B \rightarrow F \rightarrow G \rightarrow H
                                                 E->R->A->B->F->G->H
                                                 F->G->H
      F->G->H
      G->H
                                                 G->H
                                                 I->J->H
       I \rightarrow G \rightarrow H
Ι
       J->H
                                                 J->H
```

Figure 2: Paths in Different Topologies for H

Red Topology

	I	Default Topology	Blue Topology	Red Topology
R	Ingress	/L A		
		/Lr E		
	Transit	L/L A	Lb/Lb A	Lr/Lr E
		/Lr E	/Lr E	
A	Ingress	/L B		
		/Lr R		
	Transit	L/L B	Lb/Lb B	Lr/Lr R
		/Lr R	/Lr R	
В	Ingress	/L F		
		/Lr A		
	Transit	L/L F	Lb/Lb F	Lr/Lr A

R	Default Topology Ingress/L A /Lr E		Blue Topolo	gy Red Topology	
	Transit		L A	Lb/Lb A	Lr/Lr E
		-	Lr E	/Lr E	
	Transit	L/L D /Lb R	Lb/Lb R /Lr D	Lr/Lr D	
F	Ingress	/L G /Lr B			
	Transit	L/L G /Lr B	Lb/Lb G /Lr B	Lr/Lr B	
G	Ingress	/L H /Lr F			
	Transit	L/L H /Lr F	Lb/Lb H /Lr F	Lr/Lr F	
I	Ingress	/L G /Lb J			
	Transit	L/L G /Lb J	Lb/Lb J /Lr G	Lr/Lr G	
J	Ingress	/L H /Lr I	, == -		
	Transit	L/L H /Lr I	Lb/Lb H /Lr I	Lr/Lr I	

1. For an ingress label forwarding entry as follows, when forward, L will be pushed and sent to the next hop A. If failure happens, Lr will be pushed and sent to the next hop E.

L/Lr

2. For a transit label forwarding entry as follows, when packet with the incoming label L arrives, L will be swapped to L and sent to the next hop A. If failure happens, L will be swapped to Lr and sent to the next hop E.

Transit L/L A /Lr E

Summary

- LDP MT can work well in different scenarios for MRT FRR.
- When LDP MT is combined with MRT FRR, follow advantages can be proposed:
 - Simplify operation and management with few additional configurations and states introduced.
 - Inherit procedures of LDP to achieve high scalability
 - Propose no additional change on label forwarding behavior in the forwarding plane to facilitate incremental deployment

Next Steps

- Get comments on mailing list
- More scenarios will be taken into account.