Applicability of LDP Multi-Topology for Unicast Fast-reroute Using Maximally Redundant Trees
draft-li-rtgwg-ldp-mt-mrt-frr-01

Zhenbin Li, Tao Zhou, Quintin Zhao
IETF 85, Atlanta, GA, USA
Introduction

• [I-D.ietf-rtgwg-mrt-frr-architecture] describes the architecture based on Maximally Redundant Trees (MRT) to provide 100% coverage for fast-reroute of unicast traffic.

• [I-D.ietf-mpls-ldp-multi-topology] has been proposed to provide unicast forwarding in the MRT FRR architecture.

• This informational draft is to provide the analysis of the applicability of LDP MT for MRT FRR
 - Procedures of LDP MT using for unicast MRT FRR
 - All possible scenarios are analyzed and typical examples are provided.
 - Applicability guidance is provided.
Procedures

- **Routing Calculation:** Consistency of all nodes in the network is the most important.

- **Label Distribution:** LDP will advertise label mapping message with corresponding MT-ID for the specific FEC. There are at least three label bindings for each FEC that are associated with default topology, red topology and blue topology.

- **Forwarding Entry Creation:** The route calculated based on MRT determines which label binding should be chosen for each FEC in a specific topology. There is not any MT information which should be processed in the forwarding plane.

- **Switchover and Re-Convergence:** The traffic switches when failure happens. The micro-loop may be produced during the course of re-convergence.

- **Switchback:** IGP-LDP synchronization can also be used for the default topology to prevent traffic loss.
Considerations

• MRT MT-ID and LDP-MT ID Consistency:
 • The MRT MT-ID used in IGP is not for routing but just for forwarding and the application to use MRT results, so the application’s (LDP-MT) MRT MT-ID should be same with IGP.

• Multiple IGP: Multiple IGPs deploy in one network.
 • It is highly desirable that in one network only one IGP protocol is deployed.

• Policy Control: Policy can be used to reducing labels’ usage for MRT FRR.
 • For multi-service network based on VPN, policy can be applied to permit only host addresses to setup LSPs in the default topology.
 • Policy is not recommended to control on LSP in the blue topology and the red topology
Scenarios (1)

• 2-Connected Network: Detailed example shows how LDP MT works for MRT FRR and how tie-breaking policy works.
• Non-2-Connected Network: Highlights how label forwarding entry installs for cut-vertex.
• Proxy Node: Difference between two scenarios are identified.
 ➢ Inter-Area and Inter-AS: End-to-end LSPs
 ➢ Partial Deployment: Proxy egress LSPs
• IP-Only Network: It is recommended that LDP MT should be deployed incrementally for the fast-reroute usage
Scenarios (2)

- LDP over TE

(a) Default Topology

(b) Graph I for MRT Computation

(c) Graph II for MRT Computation
2-Connected Network Example

(a) Topology

(b) Blue Topology

(c) Red Topology

Figure 1: 2-Connected Network

According to the MRT calculation, for a specific destination H, there are following paths in different topologies for other nodes,

Default Topology
R ->A->B->F->G->H
A ->B->F->G->H
B ->F->G->H
C ->B->F->G->H
D ->C->B->F->G->H
E ->D->C->B->F->G->H
F ->G->H
G ->H
I ->G->H
J ->H

Blue Topology
R->A->B->F->G->H
A->B->F->G->H
B->F->G->H
C->B->F->G->H
D->E->R->A->B->F
E->R->A->B->F->G->H
F->G->H
G->H
I->J->H
J->H

Red Topology
R->E->D->H
A->R->E->D->H
B->A->E->D->H
C->D->H
D->H
E->D->H
F->B->A->R->E->D->H
G->F->B->A->R->E->D->H
I->G->F->B->A->R->E->D->H
J->I->G->F->B->A->R->E->D->H

Figure 2: Paths in Different Topologies for H
2-Connected Network Example (cont)
2-Connected Network Example (cont)
2-Connected Network Example (cont)

<table>
<thead>
<tr>
<th>Default Topology</th>
<th>Blue Topology</th>
<th>Red Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Ingress</td>
<td>--/L A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr E</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr E</td>
<td>Lr/Lr E</td>
</tr>
<tr>
<td>A Ingress</td>
<td>--/L B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr R</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr R</td>
<td>Lr/Lr R</td>
</tr>
<tr>
<td>B Ingress</td>
<td>--/L F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr A</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr A</td>
<td>Lr/Lr A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default Topology</th>
<th>Blue Topology</th>
<th>Red Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Ingress</td>
<td>--/L A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr E</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr E</td>
<td>Lr/Lr E</td>
</tr>
<tr>
<td></td>
<td>/Llr R</td>
<td>Lr/Lr D</td>
</tr>
<tr>
<td>F Ingress</td>
<td>--/L G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr B</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr B</td>
<td>Lr/Lr B</td>
</tr>
<tr>
<td>G Ingress</td>
<td>--/L H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr F</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr F</td>
<td>Lr/Lr F</td>
</tr>
<tr>
<td>I Ingress</td>
<td>--/L G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr J</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr G</td>
<td>Lr/Lr G</td>
</tr>
<tr>
<td>J Ingress</td>
<td>--/L M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr I</td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td>L/L M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Lr I</td>
<td>Lr/Lr I</td>
</tr>
</tbody>
</table>
2-Connected Network Example (cont)

1. For an ingress label forwarding entry as follows, when forward, L will be pushed and sent to the next hop A. If failure happens, Lr will be pushed and sent to the next hop E.

 Ingress -->/L A
 /Lr E

2. For a "2-connected" network, the incoming packet will be sent to the next hop through the next hop route L/Lr.
2-Connected Network Example (cont)

1. For an ingress, the label will be pushed. Ingress

2. For a transit label forwarding entry as follows, when packet with the incoming label L arrives, L will be swapped to \(L_r \) and sent to the next hop A. If failure happens, L will be swapped to \(L_b \) and sent to the next hop E.

Transit L/Lr A

/Lr E
Summary

• LDP MT can work well in different scenarios for MRT FRR.
• When LDP MT is combined with MRT FRR, follow advantages can be proposed:
 - Simplify operation and management with few additional configurations and states introduced.
 - Inherit procedures of LDP to achieve high scalability
 - Propose no additional change on label forwarding behavior in the forwarding plane to facilitate incremental deployment
Next Steps

• Get comments on mailing list
• More scenarios will be taken into account.