OAuth Security

Phil Hunt, Hannes Tschofenig

Status

Dec 2012

Submit 'HTTP Authentication: MAC Authentication' to the IESG for consideration as a Proposed Standard

- The charter has a security related item.
- In the meanwhile we had produced a more comprehensive threats and security requirements document:
 - http://tools.ietf.org/html/draft-tschofenig-oauthsecurity-00

Security and Privacy Threats

- List of threats is based on NIST Special Publication 800-63.
 - Token manufacture/modification
 - Token disclosure
 - Token redirect
 - Token reuse
- Details in Section 3 of <u>http://tools.ietf.org/html/draft-tschofenig-</u> oauth-security-00

Threat Mitigation

- An important part of the threat mitigation is the protection of the token. This work was done in JOSE, in a separate working group, but originated in the OAuth WG.
- There are different directions regarding the mitigation of threats. Three broad classes exist:
 - 1. Confidentiality Protection
 - 2. Sender Constraint
 - 3. Key Confirmation
- RFC 6749 offers a solution to these threats using approach (1).
- Now, we tackle approach (3).

Security Requirements

- There are two components that need to be considered:
 - Client<->Authorization Server: Requesting and obtaining keying material and meta-data.
 - Client<->Resource Server: Confirming knowledge of the key

Privacy & Security Requirements, cont.

- RFC 4962 provides guidance for three party authentication and key exchange protocols. Provides a good starting point.
- Requirements:
 - Cryptographic Algorithm Independent
 - Strong, fresh session keys
 - Limit Key Scope
 - Replay Detection Mechanism
 - Authenticate All Parties
 - Authorization
 - Keying Material Confidentiality and Integrity

Privacy & Security Requirements, cont.

- Requirements (cont.):
 - Confirm Cryptographic Algorithm Selection
 - Uniquely Named Keys
 - Prevent the Domino Effect
 - Bind Key to its Context
 - Authorization Restriction
 - Client Identity Confidentiality
 - Resource Owner Identity Confidentiality
 - Collusion
 - AS-to-RS Relationship Anonymity
- Details are provided in Section 5 of draft-tschofenig-oauthsecurity-00.txt

Suggested Design Approach

- Maximum re-use of available OAuth & JSON WG specifications.
- Develop two alternative solutions based on symmetric as well as asymmetric cryptography.
 - Hard to decide without being able to judge the details.
- Avoid options as much as possible.
- Tighten the usage of OAuth 2.0 features.
 - Mandatory client authentication.
 - Mandatory state attribute.
- Produce running code in parallel to the specification development.
- Chairs are considering conference calls for faster progress.

Strawman

- Client asks AS for a Token. Additional information, such as
 - Intended recipient
 - Scope
 - Algorithm indication
- Authorization Server returns two elements:
 - For Client consumption: Keying material, lifetime, key id, granted scope, and other authorization information relevant for the client.
 - For RS consumption: Access Token (with keying material included).
- Request and response encoded in JSON and is protected.

Strawman, cont.

- Client needs to demonstrate possession of a secret to the RS.
 - Creates JSON object including key-id, algorithm information, replay protection information.
 - Access Token also provided
- RS processes request and may derive keying material for subsequent Client<->RS interaction.
- TLS channel binding support provided, and can be added.