CAPWAP Extension Problem Statement
draft-shao-capwap-plus-ps-01
draft-cao-capwap-eap-00

Chunju Shao, Hui Deng, Haiyun Luo
China Mobile
Rong Zhang, China Telecom
FAROOQ BARI, AT&T
Cao Zhen, China Mobile (Presenter)
CAPWAP was standardized by IETF between 2004-2010.

- RFC4564: requirements and objectives
- RFC5415, RFC5416: specifications

Years passed, but we still could not connect an AP to an AC of a different vendor

- Partly because of the business model in the industry
- And partly originated from the need of AP-AC interface standard extension
Scenarios & Problems of AP-AC

* Scenarios
 * In an incremental deployment, new APs can join the existing hotspot, and new AC can be added to increase network capacity
 * Flat network architecture, distributed data routing and centralized control and authentication
Local MAC and Split MAC, or Hybrid MAC?

As from RFC5416, local mac and split mac

<table>
<thead>
<tr>
<th>Functions</th>
<th>Local MAC</th>
<th>Split MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution Service</td>
<td>AP/AC</td>
<td>AC</td>
</tr>
<tr>
<td>Integration Service</td>
<td>AP</td>
<td>AC</td>
</tr>
<tr>
<td>Beacon Generation</td>
<td>AP</td>
<td>AP</td>
</tr>
<tr>
<td>Probe Response Generation</td>
<td>AP</td>
<td>AP</td>
</tr>
<tr>
<td>Power Mgmt/Packet Buffering</td>
<td>AP</td>
<td>AP</td>
</tr>
<tr>
<td>Fragmentation/Defragmentation</td>
<td>AP</td>
<td>AP/AC</td>
</tr>
<tr>
<td>Assoc/Disassoc/Reassoc</td>
<td>AP/AC</td>
<td>AC</td>
</tr>
<tr>
<td>Classifying</td>
<td>AP</td>
<td>AC</td>
</tr>
<tr>
<td>Scheduling</td>
<td>AP</td>
<td>AP/AC</td>
</tr>
<tr>
<td>Queuing</td>
<td>AP</td>
<td>AP</td>
</tr>
<tr>
<td>IEEE 802.11 RSN(WPA2)</td>
<td>AC</td>
<td>AC</td>
</tr>
<tr>
<td>IEEE 802.11 802.1X/EAP</td>
<td>AC</td>
<td>AC</td>
</tr>
<tr>
<td>RSNA Key Management</td>
<td>AC</td>
<td>AC</td>
</tr>
<tr>
<td>IEEE 802.11 Encryption/Decryption</td>
<td>AP/AC</td>
<td></td>
</tr>
</tbody>
</table>

- It is difficult to inter-operate because of these options
In a scenario of data and control separation, the EAP message should be encapsulated in CAPWAP-CTL plane in stead of data plane.

Note: EAP is by default encapsulated into the CAPWAP-Data Plane
New Elements needed, as IEEE has moved from ~802.11-2007 to 802.11-2012

- 802.11n support
 - CAPWAP should allow the access controller to know the supported 802.11n features and the access controller should be able to configure the different channel binding modes.

- Channel auto reconfiguration
 - Channel auto reconfiguration could improve the Wi-Fi performance, CAPWAP message could be extended to support this function.

- Power auto reconfiguration
 - Power auto reconfiguration could improve the Wi-Fi performance. CAPWAP message could be extended to achieve following outcome.

- Others?
Three operators in China has cosign the AP-AC standard work in CCSA
Testing the inter-operability of AP and AC between four different vendors

Seriously, it is NOT a Myth
We extend the first step though...
Next Step in IETF

* Re-start the Capwap work in Opsawg
 * Capwap encapsulation of EAP document – Opsawg
 * Air-interface management extension document – Opsawg

* Best current practice on the Local/Split MAC – individual
Comments Welcome