Outline

• What’s in the document
• Open Issues
 – Encoding
 – Device Discovery
 – Security
What’s in the document

• Clarified whether messages and parameters are:
 – Mandatory
 – Optional
 – Regulator-specific
Protocol Overview

• Database Discovery (TBD)

• Initialization
 – Initial handshake: Exchange capability info
 – Optional for device, DB must support

• Device Registration
 – Regulator-specific (e.g., not all regulators)

• Device Validation
 – Validation of slave devices by master devices
 – Regulator-specific

• Available Spectrum Query
• Spectrum-use Notification
 – Regulator-specific
Initialization

• Purpose:
 – To exchange capability information
 – Allow database implementations or regulatory domains add extra handshake.

• Request parameters
 – Common parameters
 • Device identifier
 • Location
 – Optional regulatory-specific data (e.g., Ofcom technology)
 – Optional database-specific data

• Response parameters
 – Common rule-set parameters (see next slide)
 – Optional regulatory-specific data
 – Optional database-specific data
Common Rule-set Info

• Regulatory domain, e.g., “us”, “uk”, etc
• Thresholds beyond which device must request new spectrum information
 – Maximum polling interval
 – Maximum location change
 – Maximum validity duration
• NOTE: Initialization is optional, because these rules could be statically configured in a device
Encoding Open Issues

- JSON-RPC
- Regulatory-specifics
- Encoding Examples
- Geo Location
- vCard
For Consideration: JSON-RPC

• Specification (http://www.jsonrpc.org)
 – Request

 "method": "echo", "params": ["Hello"], "id": 1

 – Response

 "result": "Hi", "errors": null, "id": 1

• Natural fit for PAWS Protocol
 – “params” for request messages
 – “result” for response messages
 – “errors” for error codes and messages
JSON-RPC Comparison

• Currently defined message structure
 – Extra layer: protocolInfo and responseInfo

• JSON-RPC message structure
Indicating Errors

• Current draft does not define error codes
• Proposal: Keep PAWS and HTTP layers separate
 – Still 200 OK at the HTTP layer
 – Response codes
 • OK
 • VERSION
 • UNSUPPORTED
 • UNIMPLEMENTED
 • UNAUTHORIZED
 • REQUIRED
 • INVALID_VALUE
 • OUTSIDE_COVERAGE
 • NOT_REGISTERED
Encoding: Regulatory Specifics

• Define regulatory specifics in appendix
 – Payload of regulatory-domain parameter: Normative or informative?

• Example encoding for “device identifier” with extensibility for regulator-specific info:

```json
{
  "serialNumber": "0234D87654554D87C",
  "us": {
    "fccId": "OPS13",
    "deviceType": "FIXED",
  },
  "uk": {
    ...
  }
}
```
Encoding: JSON Schema

- INIT_MSG schema

```json
{
  "name": "INIT_REQ",
  "description": "Initialization Request message.",
  "type": "object",
  "properties": {
    "protocolInfo": {
      "type": "ProtocolInfo",
      "required": true
    },
    "deviceId": {
      "type": "DeviceIdentifier",
      "required": true
    },
    "location": {
      "type": "GeoLocation",
      "required": true
    }
  }
}
```
Encoding: JSON Schema

- ProtocolInfo Schema

```json
{
  "name": "ProtocolInfo",
  "description": "Required information for all PAWS messages.",
  "type": "object",
  "properties": {
    "version": {
      "description": "Version of the PAWS protocol",
      "type": "string",
      "required": true
    },
    "messageType": {
      "description": "Name of the containing message (e.g., INIT_REQ)",
      "type": "string",
      "required": true
    }
  }
}
```
Encoding: JSON Example

- INIT_MSG

```json
{
    "protocolInfo": {
        "version": "1.0",
        "messageType": "INIT_MSG"
    },
    "deviceId": {
        "serialNumber": "0234D87654554D87C",
        ...
    },
    "location": {
        "latitude": 37.9938,
        "longitude": -120.09384,
        ...
    }
}
```
Encoding: Geolocation

- Location of Device vs Antenna

- Intent: Compute available spectrum at \((\text{lat1}, \text{lng1}, z)\)
 - \(Z\) Relative to ground: Measure by installer
 - \(Z\) Relative to sea level: Automated measurement, e.g., via GPS
Encoding: Geolocation

• RFC6225 GeoLoc: latitude, longitude, altitude with uncertainties
 – Latitude, uncertainty
 – Longitude, uncertainty
 – Altitude, uncertainty
 – datum

• Should antenna height be specified separately within antenna characteristics? or use a single “location” object?
Batch Requests

• The draft allows batch requests (optional) for a sequence of locations
 – Use case: Mobile device asking for spectrum along anticipated path
 – The Database MAY return responses in any order
 – The Database MAY limit the number of locations processed
 – NOTE: Does not satisfy requirement D8
 • Requires support for a geographic area
How to Support requirement D8?

• Option 1: Extend RFC6225
 – Add radius to support circle
 – List of points (lat, long) to support polygon

• Option 2: JSON encode RFC5491
 – Only need circle and polygon shapes
Encoding: vCard

- `draft-bhat-vcarddav-json-00` provides JSON encoding of vCard
- Only contact fields will be used, e.g.,

```json
{
    "version": "4.0",
    "fn": "John Smith",
    "adr": {
        "street": "100 Main Street",
        "locality": "Summersville",
        "region": "CA",
        "code": "90034",
        "country": "USA"
    },
    "tel": {
        "uri": "tel:+1-213-555-2344"
    },
    "email": {
        "text": "j.smith@email.com"
    }
}
```
Database Discovery

• Should it be a different document?
Security: Observations

• A malicious device can use spectrum without ever contacting a database
• No current White Space rules (FCC, Ofcom) require client authentication
Security: Client Authentication

• Challenge: Relies on physical security of millions of devices:
 – With access to the physical device, secrets can be extracted, allowing impersonation

• Given that a malicious device can operate without even contacting the Database, what is the role of client authentication?
Backup Slides
Protocol Overview: Basic

- Database Discovery (TBD)
- Available Spectrum Query
 - Device provides its identity and location
 - Database responds with schedule of available spectrum, as determined by regulator rules
Example JSON: RFC6225 GeoLoc

{
 "latitude": 37.231923,
 "latUnc": 25,
 "longitude": -120.39485,
 "longUnc": 25,
 "altitude": 52,
 "altUnc": 10,
 "atype": 1,
 "datum": "WGS84"
}