RMCAT architectural overview

Michael Welzl

michawe @1fi.u10.no

RMCAT, 85t IETF Meeting
8.11. 2012



Disclaimer

* |'ll be talking about “sender” and “receiver”
here, just to differentiate roles
— Yes we’re dealing with bidirectional traffic, but so

is TCP, and talking about “sender” and “receiver”
roles never was a problem there



A framework

* Delay-based congestion control has many, many issues
— Unlikely that we solve them all straight away

* Charter: “Determine if extensions to RTP/RTCP are needed
for carrying congestion control feedback, using DCCP as a
model. If so, provide the requirements for such extensions
to the AVTCORE working group for standardization there.”

— This sounds like “define fields”, but DCCP had to do much more
to become a framework

— |t may also be overloaded...

 The framework involves some general design decisions that
would affect all cc. mechanisms we standardize

— Better get them right from day 1



TCP, for example

* Feedback

— Unreliable ACKs; can lead to misinterpretation of backward loss
as forward congestion

— not a big deal because information in ACKs redundant, and lots
of ACKs are sent

— to detect backward congestion (and do ACK cc.), sender must
know receiver’s ACK ratio

e Reaction to ECN

— MUST be similar to reaction to loss, for compatibility with non-
ECN-capable TCP flows

* Pluggable congestion control

— even without standardization, sender-side change, no need to
even inform the receiver

— possible because of rather “dumb” (better: “generic”) receiver



Lessons learned from TCP

* Feedback

— To avoid misinterpreting feedback loss as forward congestion and/
or do backwards congestion control: consider making ACKs
reliable (see DCCP)

e Reaction to ECN

— We're designing stuff from scratch here, could make all RMCAT

flows ECN-capable => no need to protect non-ECN-capable
RMCAT flows (?)

— Flows that don’t get ECN marks from the same bottleneck:
not likely (?)

* Pluggable congestion control
— Probably desirable

— Requires one side to be generic or [Randell]: both sides generic,
might be possible to exchange either one of them



Devil’s advocate:
Consider RRTCC (draft-alvestrand-rtcweb-
congestion-03), for example

Receiver:
— Look at changes in inter-packet delay, apply some maths (Kalman filter)

— If the sender should stop increasing (or a feedback timer expires), tell it “your
new rate is X”

Sender:
— calculate TFRC equation; rate is max (result of TFRC equation, X)

— In the absence of a feedback, increase rate
(but: no feedback for a long time => timeout)

Can we agree that:
— this receiver behavior is ok for all possible future senders?
— this sender behavior is ok for all possible future receivers?

Thinking of TCP again:
the simpler one side, the more flexible the other becomes



Sender- vs. Receiver-based

* Perhaps we should decide now which side
to make simple?

 Many sides to sender- vs. receiver-based CC...

Key question:
always minimize feedback or not?

— might make the control unnecessarily fragile

+ less traffic is less traffic... also: simpler than feedback-CC, and
e.g. smaller chance of collision on wireless

* Many more pro’s and con’s... e.g., “interactions with
applications”: importance of packets in send buffer
could play a role for congestion control decision

— affects signalling in case of receivers-side cc.



Coupled congestion control

* Only makes sense for flows that share a bottleneck

— Obvious for some flows in case of WebRTC
(same 5-tuple = same bottleneck)

— Less so in the general case, but there are working methods

— Coordinate streams between multiple hosts: need to detect
shared bottlenecks on both sides

 Signalling needed

H2

H1 ) H3




“Flow State Exchange” (FSE)

* The result of searching for minimum-necessary-
standardization: only define what goes in / out, how
data are maintained

— Could reside in a single app (e.g. browser) and/or in the OS

Traditional CM FSE-based CM Another possible
implementation
CM CM of flow coordination
Stream 1 / Stream 1 Stream 1
FSE FSE «—

Stream 2 AN Stream 2 i Stream 2




Thank you!

Questions?



