Congestion control for lower latency and lower loss media transport

draft-ohanlon-rmcat-dflow-01

Piers O’Hanlon
Ken Carlberg
Updates(1): 00 ➔ 01

• New sections
 – Delay Composition
 • transmission (or serialisation), propagation, processing, and queuing delays
 – Delay Measurement
 • How we measure it
 – Slow-start
 • Mentioned that delay-based approach is used there too
 – Loss-mode
 • A statement of intent
Updates(2): 00 ➞ 01

• Reworked a lot of the document
 – Added refs for previous work
 – Cleared up notation
 – Various clarifications
 – Corrected typos
Background

• Most existing congestion control is loss-based
 – Results in full queues => high delay and loss
 • E.g. TCP{new/Reno, Cubic}, TFRC, SCTP, TFWC

• Some delay-based schemes – But most don’t aim to *minimise* delay
 • E.g. CARD, Tri-S, Vegas, CTCP (partial), CxTCP, LEDBAT

• A few do now (but mostly unpublished)
 • Ghanbari fuzzy logic, Google RRTCC
DFlow: Objectives

• **Lower Delay**: Needed in today’s bufferbloated Net
 – Should stay below 150ms [ITU.G114] (not exceed 400ms)
• **Lower Loss**: Loss is bad for media (retransmit tricky)
 – Low delay usually implies low loss as queues not full
• **Smoothness**: Codec output generally smooth
 – Within constraints of: media, codec, and network path.
• **Fairness**: Should aim to be reasonably fair
 – Initially we aim for self fairness and we aim to tackle TCP fairness in later rev.
Objectives (Planned)

• **[Burst Management]**: Mechanisms to handle the bursty nature of media
 – E.g. Allow bursts when conditions permit
 – Providing for smoother quality

• **[Loss-based mode]**: Mechanisms to allow for ‘fair’ thruput against loss-based CC flows
 – Without additional network support (e.g. Codel, PIE) delay & loss would be largely beyond control.
Design Outline

• Loosely based on TFRC design
 – Rate-based, TCP equation, RTT smoothing, and ‘loss’ event rate smoothing

• Uses TCP equation to derive an operating rate

• Utilises ‘delay losses’
 – Based on relative delay and its derivative

• Employs ‘congestion event history’
 – Based on TFRC ‘loss event history’ mechanism
Simulation: DFlow

5xDFlow BW=1Mb/s RTT=120ms Target=50ms Q=35

Rate (Mbit/s) / Delay (secs)

Time (secs)

DFlow#0
DFlow#1
DFlow#2
DFlow#3
DFlow#4
Forward Delay
Simulation: TFRC

5xFRC BW=1Mb/s RTT=120ms Q=35

Rate (Mbit/s) / Delay (secs)

Time (secs)
Discussion

• This is work in progress and we’re seeking feedback/comments
• Work on planned objectives
 – Loss-mode for competition with TFRC/TCP
 – Burst management
• More simulations and testing