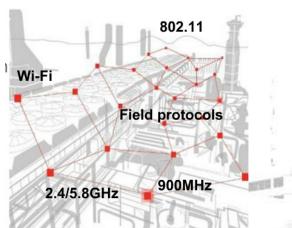
ROLL Working Group Industrial Deterministic Routing Extension for LLN draft-wei-roll-scheduling-routing-01


Min Wei, Heng Wang, Ping Wang, Chao Zhou

Nov. 5th, 2012

• The Problem

- RPL is expected to be more suitable for industrial application.
- The requirements from the industrial environment for a routing protocol in Low power and Lossy Networks (LLNs) is analyzed in [RFC5673].
- Determinism is one of the most important requirements in industrial application. In industrial wireless application, cross-layer design needed to be considered to promote the performances of the determinism scheduling, which is not only related to link layer, but also affects the routing.

Standard Analysis

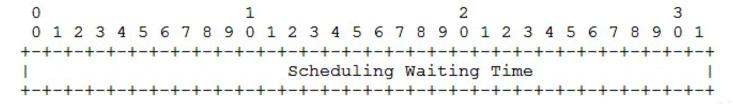
- Low Latency Deterministic Networks(LLDN) is specified in IEEE 802.15.4e, which is organized with a superframe structure and using low latency frames.
 - It is for industrial application
 - Deterministic is key point

- All of these exciting industrial wireless standards essentially address the same physical space where wireless can be used for industrial applications.
- It uses determinism scheduling mechanism makes certain nodes communicate in certain slot.

Industrial Routing Requirements

- ROLL Working Group has defined application-specific routing requirements for routing protocol in [RFC5673]
- This RFC provides information on the varying deployment scenarios for such LLNs and how RPL assists in meeting those requirements.
- Therefore, we suggest some specific metric should be considered, so that
 - RPL could become more widely used in industrial application
 - It is good for the RPL used in some applications, such as base on IEEE802.15.4e

The Opportunity

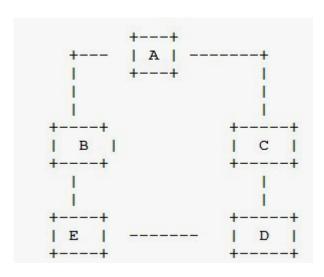

- The routing metrics and constraints are specified in [RFC6551], which provides a high degree of flexibility and a set of routing metrics and constraints.
- This document specifies Object-Scheduling Waiting Time as the routing metrics and constraints to be used in path calculation for Low Latency Deterministic Networks.
- The new metrics and constraints we define in this document could be advertised as a metric to optimize the computed path and as a constraint.

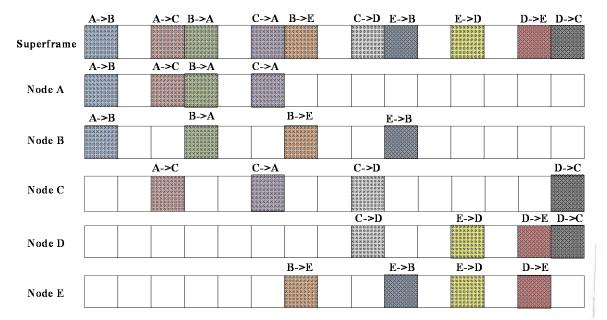
Definition

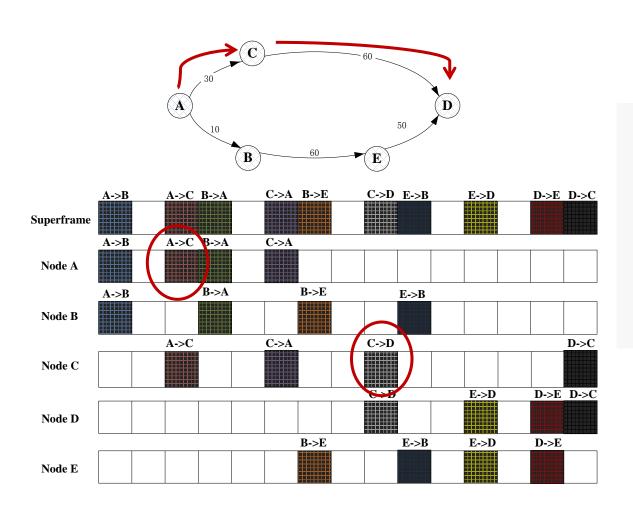
- ◆ Scheduling waiting time: The time is used to for a node have to wait to send data to a special node in a period. When the MAC layer schedules the slot time and channel resources of network with TDMA mechanism, each node gets send slots and receive slots.
- ◆ **Determinism:** It is usually meant that access to the control network by a node may be delayed, where t is known. In industrial wireless network, it also means that data is sent and received within the stipulated time.

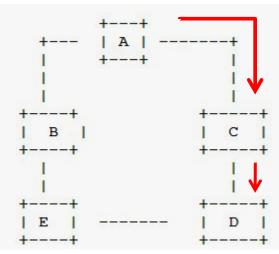
Scheduling Waiting Time Object

Scheduling Waiting Time Object Body Format

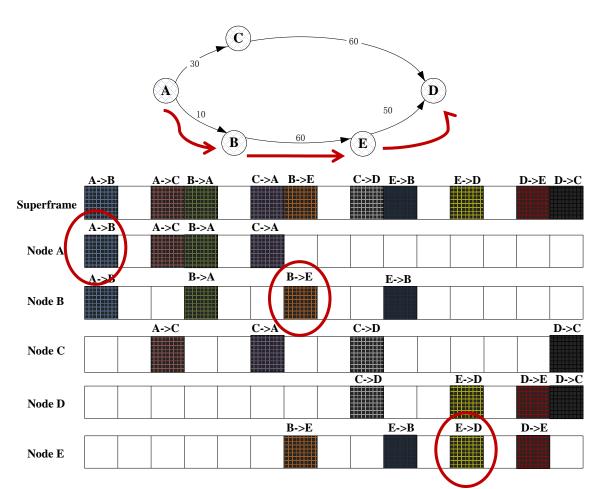


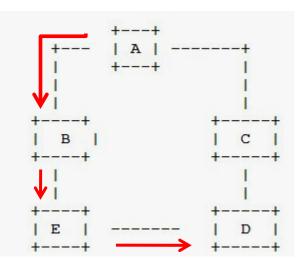

Scheduling Waiting Time sub-object Format


Mode of Operation


- The Scheduling Waiting Time may be used as a constraint or a path metric.
 - Scheduling Waiting Time object common header indicates that the provided value relates to a constraint.
 - Scheduling Waiting Time object may be used as an aggregated additive metric where the value is updated along the path to reflect the path Scheduling Waiting Time.

- There is an instance to explain how to use Scheduling Waiting Time object to be as a metric and constraint. The topology of the network is show as Figure.
- There are 15 timeslots in the superframe, which has been allocated to each node. We define them as timeslot 1, timeslot 2 ... timeslot 15. Here, we define a timeslot as 10 ms.





A->C: $3*T_{slot}=30ms$

C->D: 6*T_{slot}=60ms

A->C->D: 90ms

A->B: $1*T_{slot}=10ms$

B->E: $6*T_{slot}=60$ ms

E->D: $5*T_{slot}=50ms$

A->B->E->D:120ms

• IANA Considerations

Value Meaning		Reference
1	Node State and Attribute	RFC6551
2	Node Energy	RFC6551
3	Hop Count	RFC6551
4	Link Throughput	RFC6551
5	Link Latency	RFC6551
6	Link Quality Level	RFC6551
7	Link ETX	RFC6551
8	Link Color	RFC6551
9	Scheduling Waiting Time	This document

• Note: It is different from the Link Latency.

Conclusion and Future Work

- This document defines a new Scheduling Waiting Time Object for RPL to support scheduling mechanism and to meet the industrial requirement of determinism.
- It could be used as one of the multi-metrics and work with the others. When using a dynamic routing metric in LLND, a RPL implementation should use multi-threshold schemes to void spurious and unnecessary routing changes. For the object format structure, the additional field is not added.
- •The reserved bit is used. However, the new object needs to be transmitted during the networking stage, which in fact needs extra overhead of 4 bytes.
- •While the network scheduling information changes, we need re-send a new value. Otherwise, if network scheduling information does not change, there is no need to send new value.

Conclusion and Future Work

- Cooperate with other groups (e.g. HCF, WIA-PA, ISA and IEC) to make this a success
 - P802.1Qbu
 - P802.1Qbv
 - SAE AS6802

Thanks