Agenda

- Goals
- Some operational issues with LFA selection
- A call for policy based LFA selection
- Some additional operational aspects
Goals

- Discuss LFA management
 - Missing point highlighted during IESG review of RFC 6571 (LFA applicability in SP networks)
 - Asked by rtgwg chair (Alia 2012/01/18)

- Provides feedback following LFA deployment

- Highlights some limitations

- Call for some improvements
Issue 1: PE used to protect a P

- Edge node / edge link used as a protection for a core link / node
 - because no other LFA was available
- Routing policy issue: edge node used to route core traffic.
- (link) capacity issue:
 - PE2 was not impacted by the original failure but becomes congested following LFA activation.
Issue 2: PE selected as best LFA to protect a P

- Edge node / edge link used as a protection for a core link / node
 - because PE2 is node protecting while R4 is link protecting
- Routing policy issue: edge node used to route core traffic.
- (link) capacity issue.
Issue 3: low bandwidth link used

- Low bandwidth link used as a protection for high bandwidth link
 - because R4 is node protecting while R5 is link protecting

(link) capacity issue.
Issue 4: high cost/delay link selected as LFA

- 4 neighbors are candidate LFA, for the failure of link CORE1-CORE2.
- PE2 is selected as best LFA and installed, while it’s an oversea PE.
- CORE3 would be the preferred choice.

Table:

<table>
<thead>
<tr>
<th>Link protected</th>
<th>Destination</th>
<th>Alternate</th>
<th>Type/ metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE1 -> CORE2</td>
<td>PE1</td>
<td>PE2</td>
<td>node protect /260000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE3</td>
<td>node protect /270000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE4</td>
<td>node protect /280000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CORE3</td>
<td>Link protect /200000</td>
</tr>
</tbody>
</table>

Oversea PEs …

Selected & installed

Meant to be the best LFA
Calling for a policy based LFA selection

- Current tie-breakers for selecting the LFA are not flexible enough to accommodate for all cases.

- Calling for a policy based LFA selection, controlled by the SP according to local constraints

- Multiple criteria expected:
 - Level of protection: node, link, srlg, local srlg
 - Type of LFA: primary, downstream, LFA
 - IGP metric to destination
 - Link coloring / node coloring (e.g. core, edge, core&edge)
 - Link info (a la TE): affinity, speed, available bandwidth, delay
 - Connectivity toward the Merge Point: link, tunnel (rLFA), TE-tunnel
 - computes rLFA even if LFA exist as rLFA may be preferred.

- Applied per protected interface or set of destinations.

- More details in §3.2 “Policy based LFA selection”
Example of a policy using link coloring

- **Marking:**
 - PE links as RED
 - 10G CORE links as BLUE
 - 1G CORE links as YELLOW

- **LFA Policy:**
 - Include BLUE, preference 200
 - Include YELLOW, preference 100
 - Exclude RED

- **Result:**
 - assuming all routers are candidate LFA
 - P2 is selected as best (non PE, 10G interface):
 - PE links not used to protect core links
 - 10G links preferred over 1G links
One more thing…

- **LFA activation granularity**
 - per address-family, per routing context, per interface, possibly per prefix.

- **Controlling LFA computations**
 - a la SPF delay / back off algorithm
 - abort LFA computation if an IGP SPF is scheduled

- **Checking coverage**
 - show coverage per IGP domain (area/level, topology, instance, virtual router), per protected link, possibly per prefix priority group
 - show non protected prefix, possibly per prefix priority group
 - providing the reason (e.g. rejected by policy),
 - alert/log if coverage falls below a threshold

- **Checking LFA selection**
 - show installed LFA & candidates LFA
 - per prefix, per interface.
 - provides the reason for selecting the LFA
Next steps

- Some first comments received
 - -01 being edited

- Soliciting more comments
 - Additional cases/issue found during deployment
 - Improvements
 -
thank you