BEAST & CRIME

How TLS was attacked

SAAG Meeting — IETF 85

Agenda

What is BEAST?

What is CRIME?

“Best Practice” Mitigations
Going forward

What is BEAST

 BEAST is an attack demonstrated by Rizzo and
Duong at Ekoparty on September 2011.

* Using Java, a network sniffer and a popular
browser they managed to mount a chosen
plaintext attack and recover session cookies
for an HTTPS session.

e The session cookies could then be used to
impersonate the user.

What is BEAST

* To do this, they used two vulnerabilities:

— SSLv3 and TLS 1.0, when used with a CBC cipher,
use the last ciphertext block of the previous
record as the Initialization Vector of the next
record. So after one record has been emitted, an
eavesdropper can know the IV of the next record.

— A bug in SOP. A script, applet or any other active
content from one origin MUST NOT be able to run
gueries to another origin using the browser
context (such as cookies). It is this violation of the
SOP in Java that allowed them to inject plaintext.

What is BEAST

* |n HTTP(S), authorization is granted based on
session, and sessions are recognized using
session cookies, that the browser sends in

requests.

 The form of the header is something like this:
Cookie: sessid=5ec20c5e8c2ebe595ab0

* |f you can inject a request, everything up to
the cookie is predictable, so you could guess
the block with the cookie, but there’s too

many possibilities.

What is BEAST

* |[n CBC the plaintext is split into blocks.

* Rizzo and Duong sent requests in different
engths, so as to play with the alignment.

e Suppose you align things so that the blocking
of the cookie header is as follows:

| Cookie: |sessid=5|ec20c5e8|c2ebe595|ab0

* Note that the entire block is predictable,
except for the last byte. Let’s guess that it’s 5.

What is BEAST

In hex, the block would look like this:
7365737369643d35

Let’s assume that the previous block of ciphertext
looked like this: de3bedcee3ade70a

XORing them together, we get this:
ad5e9ebd8ac9da3f

Let’s assume that this block of ciphertext was
this: 0165b037d2e44954

If we’re right, then the browser encrypted
ad5e9ebd8ac9da3f and got 0165b037d2e44954.

What is BEAST

 We can prove ourselves right by having the
browser use the same key to encrypt that
same block again.

* The obvious candidate was WebSockets. Once
you have upgraded to WS, you can pretty
much send anything, and SOP is weak.

— But then a new spec of WS ruined it.

 Turns out Java had a flaw.

What is BEAST

The URLConnection class in Java has an API
where you could create a request, and send
information in small chunks.

When the SSL stack decides it’s had enough
data to fill a record, it sends that record.

Now the attacker can sniff the last ciphertext
block of the just-emitted record. Assume it’s
f4e52al1a9f11f116.

This block is going to get XOR‘ed with the next
block that the attacker sends.

What is BEAST

e The attacker chooses 59bbb4a715d82b29 as the
data it adds next.

— Why? Because XOR-ing that with the last plaintext
block (=the IV of the next record) yields
ad5e9ebd8ac9da3f.

 |f the first block of ciphertext on the next
record is equal to 0165b037d2e44954, it means
we were right, and the first character in the

cookie is ‘5.
* Repeat to get the rest of the cookie.

What is BEAST

* So what’s wrong?
— The big issue here is the violation of the SOP.

— Even without discovering the cookie, sending
arbitrary requests allows you to buy yourself stuff
on many e-commerce sites.

— This leads to a mixture of attacker-controlled and
browser-controlled data.

— Also, CBCin TLS 1.0 is vulnerable. TLS 1.1 (and
using stream ciphers / CTR / GCM) solve this.

What is CRIME

 CRIME is another attack presented at this
vear’s Ekoparty by the same Juliano Rizzo and
Thai Duong.

* This one works with any TLS version and relies
on the compression function revealing
patterns in the plaintext.

* Unlike BEAST, this does not rely on breaking
the SOP.

What is CRIME

Assume you have a connection to bank.com.
The TLS session has compression enabled.

As before, every request includes a cookie,
which is used to associate the request with a
user: Cookie: sessid=5ec20c5e8c2ebe595ab0

Compression functions work by finding

repeated patterns, and including them only
once.

What is CRIME

 What this means, is that a request that
includes “sessid=5" will compress better than
a request that includes “sessid=7", because it
has a longer shared part
with the real cookie.

* |t’s not necessary to control the data, all you
need to do is to make sure these requests are
sent together with the cookie

What is CRIME

<html><head><title>Evil.com</title></head><body>

</body></html>

What is CRIME

The HTML in the previous page causes 7
requests to be made in succession.

One of them will result in a shorter query than
the others.

That’s the one with the correct guess.
Repeat for the next byte.

What is CRIME

e So what is the root cause here?

* |van Risti¢ says it’s that attacker-controlled
and secret data are compressed together.

Mitigations

e After BEAST, there were two suggestions
going around: Don’t use CBC or upgrade to

TLS 1.1.
* Since some major browsers still don’t support
TLS 1.1 and 1.2, this effectively means RC4

— Which, if you’ve been listening to NIST, is not
recommended.

* For CRIME, we can disable compression
— Enabled in 42% of websites, but...

— By now disabled in 93% of browsers.
* Thanks to patches

Going Forward

* |t’s been suggested to accelerate the adoption
of TLS 1.1/1.2

— Microsoft has enabled it in their browsers.
— OpenSSL has finally shipped it.
— So did some other vendors.

* Do we really need compression?
— HTTP offers body compression anyway.

— HTTP/2.0 is discussing different encoding for the
header, including compressed and binary-efficient
encodings.

