Troubleshooting SDNs

Peyman Kazemian

Stanford University

Why SDN Troubleshooting

 SDN decouples software (control plane) from
hardware (data plane).

v’ Opens doors for innovation in networks.

v’ More competition.

v'Brings down the capex.

? Makes network management task easier and hence
reduce opex.

* SDN software stack is a complex distributed system working
in an asynchronous environment, which introduces new
bugs and troubleshooting challenges.

 Hardware, Network OS and Apps could come from different
vendors. What will happen when things break? Who to
blame?

Why SDN Troubleshooting

* SDN gives us a unique opportunity for
systematic troubleshooting.
» Decouples control plane from data plane.

» State changes pushed from a logically centralized
location.

»Easier to access/observe the state of the network.

»SDN architecture provides clear abstraction for
control plane functionality.

Richer troubleshooting techniques.

SDN Architecture

T e
— — =
Logical View /./‘./ / ..\./ / '- /

Physical View / A /

Network 0S

=,

* Bug = Mistranslation
between different layers

Device State

Hardware

Reactive Troubleshooting of SDNs

One possible Binary Search to detect where error happens reactively.

[Operator Intent]

Policy Y 7y
“AppS” l’—_’
1
. . 1
Logical View No '/,——f Yesj
NetHypervisor C;) e > ! - NG >
] I
Physical View ’?> > Yes: Yes:
)] !
NetOS No ! @..T\I.O. -
|
\
\

Device State

No
Firmware e @a\- N 2
es|
Hardware !

[Actual Behavior] ‘e

Proactive Troubleshooting of SDNs

One possible Binary Search to detect where error happens proactively.

[Operator Intent]

Policy 'y
uAppS” (’__.»
. . 1
Logical View N I,—-> Yes!
. ? © - P : = >
NetHypervisor <=> |' No
Physical View -
Y Yes,
NetOS Pt .>
v No
Device State
No No
Firmware @ ----- > @ IR ¢
|
Hardware €3

[Actual Behavior] v ey

RESEARCH WORKS ON SDN
TROUBLESHOOTING

Troubleshooting SDNs

NDB (Where is the debugger for my software defined network, HotSDN’12)
ATPG: (Automatic Test Packet Generation, CONEXT'12)

[Operator Intent]

Policy # 'y
“Apps”

Logical View
NetHypervisor <;> @

Physical View Cg)
NetOS T é}

Device State
Firmware @ @
Hardware

[Actual Behavior] | Y v

Troubleshooting SDNs

AntEater (Debugging the dataplane with AntEater, Sigcomm’11)
HSA (Header Space Analysis: static checking for networks NSDI’12)
VeriFlow (Verifying Network-wide invariants in real time, HotSDN’12)

[Operator Intent]

Policy i 'y

“AppS”

Logical View
NetHypervisor (;) @

Physical View _
NetOS @
\ 4

Device State
Firmware @ @
Hardware

[Actual Behavior] Y v

Troubleshooting SDNs

OFRewind (Enabling record and replay troubleshooting for networks, ATC'11)
NICE (a NICE way to test OpenFlow applications, NSDI'12)

[Operator Intent]

Policy i 'y

“AppS”

Logical View
NetHypervisor C;) @

Physical View COD
NetOS T @

Device State
Firmware @ @

Hardware

[Actual Behavior] Y v

Troubleshooting SDNs

Bi-Simulation (What, Where and When: Software Fault localization for
SNDs, UC Berkeley tech report)

[Operator Intent]

Policy i 'y

“AppS”

Logical View
NetHypervisor C;) @

Physical View COD
NetOS T @

Device State
Firmware @ @

Hardware

[Actual Behavior] Y v

Troubleshooting SDNs

RIB == FIB? Compare device state against the actual bits and bytes in
TCAMs, etc.

[Operator Intent]

Policy i 'y

“AppS”

Logical View
NetHypervisor C;) @

Physical View COD
NetOS T @

Device State
Firmware @ @

Hardware

[Actual Behavior] Y v

WHAT ELSE IS NEEDED?

Policy Expression Language

* Rarely the policies are maintained anywhere,
except in the mind of network admins!

* Systematic troubleshooting requires such
clear policy description.

» Easy-to-use, expressive and standard network
policy description language.

Better Troubleshooting Tools

* Not just detect where the problem is, but also find its root
cause -- automaticaly.

— Some of these tools can partially do that.

 Challenges:

— What Information is needed?
Packet history (NDB)?
Control message history (OFRewind)?
“Logic” behind control/data plane?

— What is the expected output?
* The sequence of events that lead to the error?

* The exact (relevant) state of control software and hardware?

* Looks like a mix of networking and symbolic execution and formal
verification.

Automated Troubleshooting

* Automatically run the search through different
layers to pinpoint the error.

— Example: a complete system could do
e Real time monitoring of data plane with test packets.

* Real time checking of network policy against control
messages.

* Problem in data plane (e.g. link down, congestion, etc)

» Report it to a control application to reroute traffic around the
troubled area.

* Problem in control plane
» Prevent the change from hitting data plane.

Policy Driven SDN

* Use these techniques in reverse —try to derive
correct state/configurations from the policy.
* Challenges:

— A policy can be implemented in zillion ways. How
to reduce the search space?

— Avoid conflicting implementation.

— What is the correct level of human involvement?

Thank Youl!

References

* A.Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.

Seetharaman
. H: KZI%]L% P. Kazemian, G. Varghese, and RNEKEBIWAMAomatic Test Packet Generation. In Proceedings of
}5812 Nice, France December 2012. OFRewind: enabling record and replay
: AR Rk 1800SR P) TKutOdekifiyime st Ravket-Gethe faviama hisProcealtinge df
Proceedings of M.Caesar
and
P.B.Godfrey
Proceeqiags A0 BN e arakNnbtcKeown. Headerifljoacevaniflyisig: séawo chevidagrfoanattsonksedhtime. In
Procqx@q%&g{bgg\ﬁﬁ 12, 2012. HotSDN 2012.

‘Oft"f\ﬂ'féaHﬁﬁ,neﬂmq#é{@'ﬁiwpk@ﬁﬁﬁﬁﬂﬂﬂﬁm%gﬁgm.MI@ww Where is the debugger for my In

Khurshid Agarwal test openflow applications.
In

Proceedings Af RISHBLR. Agarwal and S.

, M. Caesar, P. B. Godfrey, and S. T. King. Debugging the data plane with
anteater. In Proceedings of SIGCOMM 2011

