
1

Discussion of Key Rollover Mechanisms

for Replay-Attack Protection

Kotikalapudi Sriram and Doug Montgomery

NIST

Contact: ksriram@nist.gov

November 9, 2012

IETF-85 SIDR WG Meeting

mailto:ksriram@nist.gov

2

Purpose of the Document

• Intended to be a design discussion document
complementing draft-ietf-sidr-bgpsec-rollover

• Provides taxonomy, descriptions of various key rollover
alternatives, and captures many of the discussions that
have occured in SIDR about the replay-attack protection

3

Key Rollover (KR) Method

• Key Rollover (KR) method has different flavors as explained in the
slides that follow

• The following features are common to all KR methods

• In the KR method, it is best if the BGPSEC router has two pairs of certs
as follows:

 A pair of origination certs (current and next) for use with prefixes
being originated by the AS of the router; and

 A pair of transit certs (current and next) for use with transit prefixes.

• Note: If a BGPSEC router only originates prefixes (i.e., has no transit
prefixes), then it needs to maintain only a pair of origination certs

• Three KR methods that are described in the slides that follow differ in
how the rollover of certs (or keys) is done

4

Periodic Key Rollover (PKR)

• Router’s origination cert’s NotValidAfter time is used as the implicit
expire time for origin’s signature

• “Beaconing” is periodic re-origination of prefixes by origin ASes

• “Beacon” before NotValidAfter time of the Current cert

• At beacon time, Next cert becomes new Current cert, and a New “next”
cert is created and propagated

• Distributed actions by prefix owners

• Transit cert can have a very large NotValidAfter time (say ~years)

• Big upside: Less load on transit routers (no need to re-propagate all
transit prefixes when peering or policy changes occur)

• Downside: Some churn in BGPSEC and RPKI; Every BGPSEC router
rolls origination cert (key) once every “beacon” interval

5

Event-driven Key Rollover (EKR)

• Key rollover is reactive to events (not periodic)

• If a peering change event involves only prefixes being originated at this
AS, then the router rolls only the origination key

• If a peering change event involves transit prefixes at this AS, then the
router rolls the transit key as well as the origination key

• If a key rollover takes place, then a corresponding (origination or
transit) new “next” cert is propagated in RPKI

• Big upside (relative to PKR): No churn in BGPSEC and RPKI as long
as no triggering events occur

• Big downside (relative to PKR): Whenever the transit key is rolled,
there is a storm of BGPSEC updates at routers in large transit ASes!
Comment:

 But it can be flow controlled / jittered. The added convergence time
may not be damaging because the data packet delivery is not
impacted? Needs measurement/modeling.

6

EKR-A: EKR where Update Expiry is

Enforced by CRL

• NotValidAfter time of origination and transit certs is set to a
large value (~years)

• Whenever key roll (for origination or transit) occurs, then
CRL is propagated for the old cert

• So the old update expires (due to invalid state) only when
the CRL propagates and reaches the reliant router

RPKI cache server sends withdraw of corresponding
Pub Key to reliant router

• Downside: Router needs to receive CRL (or Pub-Key
withdrawal from RPKI cache) in order to know update has
expired; This is CRL propagation time dependent

7

EKR-B: EKR where Update Expiry is

Enforced by NotValidAfter Time

• NotValidAfter time of current origination and transit certs is set to a
value determined by desired vulnerability window (~day)

• Update expiry is controlled by NotValidAfter time and CRL is not sent
for the old cert when key rollover happens

• If no triggering event occurs to cause origination key roll within a pre-
set time (< NotValidAfter), then new origination cert is issued only to
extend the NotValidAfter time but the corresponding key pair and SKI
remain unchanged.

• Likewise for the transit (current and next) certs/keys

• Upside: Routers do not get any RPKI updates from the cache server
when cert changes but key pair and SKI remain unchanged

 Routers do not receive NotValidAfter time

 RPKI cache keeps track of NotValidAfter time

 RPKI cache provides to router only valid {AS, SKI, Pub Key} tuples

8

Load Due to BGP and BGPSEC/PKR

Periodic Re-Originations (i.e. Beacons) for 3 Peers

Using Routeviews data,

Feb 1, 2012.

BGP feeds from AS7018,

AS 701, and AS 3356

peer routers combined.

BGPSEC/PKR router in

consideration receives

full tables from three

peers in AS7018, AS 701,

AS 3356.

Update load due to

beacons in PKR method

is estimated using a

Poisson model.

Re-origination (Beacon) Interval = 24 hours

9:00 a.m. 11:00 a.m.

10

100

1,000

10,000

540 550 560 570 580 590 600 610 620 630 640 650 660

P
re

fi
x-

u
p

d
at

e
s

p
e

r
se

co
n

d
 d

u
ri

n
g

th
e

p

e
ak

 s
e

co
n

d
 o

f
e

ac
h

 x
-a

xi
s

m
in

u
te

Time (minutes)

BGP + Beacons

BGP

Beacons

9

Comparison of PKR vs. EKR: Scenario 1

AS1 AS2 AS3 AS4

AS5

• Assume each AS in this figure also
represents a single BGPSEC router

• We focus on workload at the router in
AS5

• AS1 thru AS4 are non-stub
customers of AS5; Each receives
almost full table (400K signed prefix
updates) from AS5

• Assume: AS1 and its customers
together originate 100 prefixes total;
likewise for AS2, AS3, AS4

• Event: Peering between AS1 and
AS5 is discontinued

Internet

• When the peering (AS5-AS1) is
discontinued:

 In the PKR method, the router at AS5
sends only 4x100 = 400 Withdraws in
total and signs/re-propagates ZERO
prefix updates

 In contrast, in the EKR method (EKR-
A or EKR-B), the router at AS5 sends
those same 400 Withdraws but also
signs and re-propagates 3x400K
+3*200 +300 = 1.2 MILLION signed
prefix updates in total

Workload Comparison:

Peering Change Event Scenario 1:

Non-stub

customers

Large ISP

10

Comparison of PKR vs. EKR: Scenario 2

AS1 AS2 AS3 AS4

AS5

• Same assupmtions apply for AS1 through
AS5 as in Scenario 1 except AS5 is multi-
homed

• AS6 through AS8 give almost full table
(400K signed prefixe updates) to AS5

• AS5 does not announce routes learned
from one ISP to another (policy)

• Assume AS5’s best path routes to the
400K prefixes are evenly distributed (i.e.,
133.3K routes each) via AS6, AS7, and
AS8

• Event: Peering between AS6 and AS5 is
discontinued

• When the peering (AS5-AS6) is
discontinued:

 In the PKR method, the router at AS5
signs and re-propagates 4x133.3K =
533K prefix updates in total

 In contrast, in the EKR method (EKR-
A or EKR-B), the router at AS5 signs
and re-propagates 4x400K = 1.6
MILLION signed prefix updates

Workload Comparison:

Peering Change Event Scenario 2:

AS6 AS7 AS8

Non-stub

customers

Large Global

ISPs

Large ISP

11

Summary of Comparison of PKR vs. EKR: Scenarios 1 & 2

Total # of Updates Signed and Re-propagated When Peering Change Event Occurs

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

Scenario 1 Scenario 2

PKR Method

EKR Method

Zero

• BGPSEC with PKR generates the same number of prefix-route re-propagations as BGP-4
when a peering/policy change event occurs

• BGPSEC with EKR typically generates far more for the same scenario

12

Possible PKR & EKR Co-Existence

• The method described in draft-ietf-sidr-bgpsec-rollover-01 is PKR

• PKR is proactive on part of the prefix originators

 Alleviates worry on part of the prefix originator about an AS in
the middle of a path having a topology change

• EKR method is reactive on part of the AS that has a topology or
policy change

 AS in the middle could defensively do EKR (even if PKR is
recommended for all ASes)

 Alleviates worry on part of the AS operator that some of the
transit prefixes’ owners may not be participating in PKR

 About 84% of all ASes are stub ASes; they may take time
before becoming savvy w.r.t. key rollover

• Possibly PKR and EKR may co-exist as a result

• Hooks needed for EKR are a subset of those for PKR

13

Backup slides

14

Time Flow Diagram to Explain PKR

Origination Key Expiry Epochs

Origination Key Rollover & Re-origination (Beacon) Epochs

X hours

X hours

 Y hours

(lead time)

• A new pair of Current / Next keys comes into effect at each Origination Key
Expiry Epoch

• Several sets of current/next origination keys can be propagated ahead of
time to prepare the router in advance for several consecutive Origination
Key Rollover & Re-origination (beacon) epochs

15

Replay Attack Example 1

• All AS peers here are eBGPSEC peers

• AS1 had announced a prefix P to AS2 at time x

• At a later time x+d, AS1 sends a Withdraw for
prefix P to AS2

• AS2 suppresses the Withdraw (does not send to
its peers any explicit or implicit Withdraw)

AS1

AS2
AS3

AS1

AS3

Withdraw

prefix P

Time: x Time: x + d

AS2

Update for

prefix P

Update for

prefix P

16

Replay Attack Example 2

• All AS peers here are eBGPSEC peers

• AS1 had announced a prefix P to AS2 at time x

•At a later time x+d, AS1 discontinues peering
with AS2

• AS2 suppresses the Withdraw (does not send to
its peers any explicit or implicit Withdraw)

AS1

AS3

Update for

prefix P

AS1

AS3
Time: x Time: x + d

Update for prefix P

(longer path)

AS1 discontinues

peering with AS2

AS2 AS2

Update for

prefix P

17

Replay Attack Example 3

• All AS peers here are eBGPSEC peers

• AS1 had announced a prefix P; prefers ingress data path
via AS2 over that via AS3

• At a later time x+d, AS1 switches ingress data path
preference to AS3 over AS2

• AS2 suppresses the new prepended path announcement
(does not send to its peers any update about P)

AS1

AS3

AS1

AS3
Time: x Time: x + d

Update for prefix P

(longer path)

AS2 AS2

Update:

AS1{pCount=1} P

Update:

AS1{pCount=2} P

(prepended;
de-prefed)

(prepended;
de-prefed)

Update:

AS1{pCount=2} P

Update:

AS1{pCount=1} P

