Lightweight 4over6: An Extension to DS-Lite Architecture

draft-cui-softwire-b4-translated-ds-lite-09

Y. Cui, Q. Sun, M. Boucadair, T. Tsou, Y. Lee and I. Farrer

IETF 85, Atlanta, Nov. 2012

Motivation

- In DS-Lite, the AFTR maintains per-flow dynamic state. This means:
 - Scaling the AFTR is prohibitive
 - NAT Logging overhead
- Relocate NAPT functionality from AFTR to B4 to:
 - Leverage the existing NAPT44 functions in CPE
 - Reduce the amount of state in the AFTR, to reduce the amount of resources, as well as logging overhead
- Keep IPv4 and IPv6 addressing architectures completely independent

Key points for lw4over6

- State maintenance
 - Subscriber binding table: [IPv6 address, IPv4 address, port-set]
- LwAFTR behavior
 - Holds the binding table: Act as a DHCP server/relay agent, or synchronize the binding with DHCP server
 - Binding table lookup: (IPv4 dst addr, dst port) => IPv6 addr
 - Packet encapsulation/de-encapsulation (RFC2473)
- LwB4 behavior
 - Request IPv4 address + port-set (DHCP)
 - Packet encapsulation/de-encapsulation, NAT within a given external port-set

Lightweight 4over6 features

- A simple extension to DS-Lite [RFC6333]
 - Address sharing mode for Public 4over6 (draft-ietf-softwire-public-4over6)
- Per-subscriber state maintenance on AFTR
 - Good scalability for overwhelming traffic; easy/no logging
- No algorithmic IPv4/IPv6 address coupling
 - Operation simplicity
 - No constraints on address planning
 - Flexible port management: on-demand/
 pre-configured IPv4 addr+port-set provisioning
- DS-Lite backward compatibility

IPv4 / IPv6 Addressing Dependency Problem – Over time MAP-E Mesh/Hub&Spoke | Iw4o6

MAP/Iw4o6

Key benefits of MAP-E

- If direct mesh communication between CPEs is required
- For implementations that have larger subscriber groups with communities common port overload requirement

Key benefits of lw4o6

- If variance and change in subscriber port overload requirements is necessary
- Optimized for the per-subscriber mapping / address sharing for
 1:1
- As only the 1:1 mode is supported, no addition operational complexity is required for other functional modes

Running Code/Field Trial/Interop

- Implementations by:
 - Tsinghua University
 - China Telecom
 - Freebit
 - Deutsche Telekom
 - Huawei (lwAFTR/lwB4)
 - Yamaha (lwB4)
 - Fiberhome (lwB4)
 - GreenNet (lwAFTR/lwB4)
- Field trialed or tested successfully in:
 - China Telecom
 - Deutsche Telekom
 - France Telecom
 - CERNET
- Successful Interop testing between:
 - Tsinghua University, China Telecom, Huawei, Yamaha, NetDominator, BII

Outcome of Vancouver meeting

- Clarify the problem space
 - Solution Optimized Per-subscriber state only
 - Solution keeps IPv4 and IPv6 addressing architectures completely separate
- WG guidance on draft revision
 - Focusing on the differences from DS-Lite and its motivation/advantages

Updates from -07

Draft rewritten following the WG guidance

- Terminology changes
 - Lightweight 4over6 initiator => lwB4
 - Lightweight 4over6 concentrator => lwAFTR
 - Add the definition of Port-Set
- Change the reference to DHCP port-set draft
 - [I-D.bajko-pripaddrassign] => [I-D.sun-dhc-port-set-option]
 - [I-D.sun] updates [I-D.bajko] and [I-D.wu]

Updates from -07

- Change the provisioning methods description
 - DHCPv4ov6 is RECOMMENDED and its DHCPv6 option is SHOULD
 - Define the behavior for full port set case as per public 4over6 for lwB4 & lwAFTR
- Improve ICMPv4 handling for the lwAFTR
 - Support inbound ICMP echo requests: check for a valid port in the ID field and forward if present, drop if not
 - Modify the alternative from 'discard all inbound ICMP requests' to 'discard all inbound ICMP messages'

Next steps

- The current version reflects the requirements of the WG
- The implementation and trial result are good
- Call For Working group Adoption?

Backup

Lightweight 4 over 6 Overview

IPv4

CPE

(NAT)

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

DHCPv6 DHCPv4

DHCPv4 (over IPv6) configures:

- CPE B4 IPv4 address
- Port range

<u>Lightweight DS-Lite CPE implements:</u>

- DHCPv4 Client Relay Agent (over IPv6) to configure
 B4 element IPv4 address
- DHCPv4 "Port Restricted" option to configure the NAT port range

DHCPv6 configures:

- CPE IPv6 address
- CPE IPv6 delegated prefix
- DNS resolver
- AFTR IPv6 address
- IPv6 address of DHCPv4 server