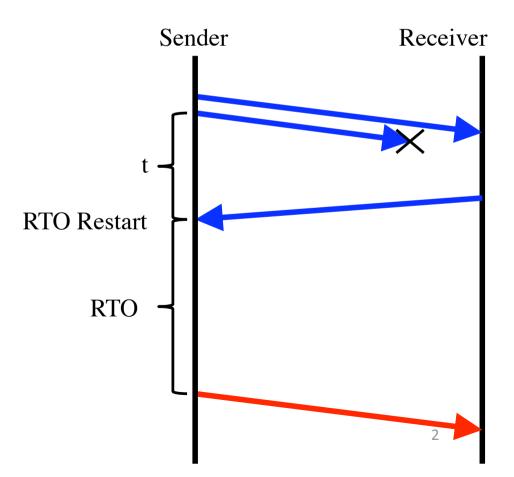
TCP and SCTP RTO Restart


draft-hurtig-tcpm-rtorestart-03

Michael Welzl michawe@ifi.uio.no

> *TCPM, 85th IETF Meeting 6. 11. 2012*

The problem

- Sometimes, RTO must be used for loss recovery
 - e.g., if a connection has 2 outstanding packets and 1 is lost
- However, the effective RTO often becomes RTO = RTO + t
 - Where $t \approx RTT$ [+delACK]
- Because the timer is restarted on each incoming ACK (RFC 6298, RFC 4960)

TCP and SCTP RTO Restart

 To allow retransmissions after exactly RTO seconds, the timer is restarted as RTO = RTO - t

– Requires storing the 4 most recent timestamps

- The modified restart is only used when
 - the number of outstanding segments < 4;
 - and there is no unsent data ready for transmission.
 - Thus, only flows incapable of FR can use modified RTO restart
- Risk of spurious timeout seemed low in initial experiments
- Note: this algorithm is still the same

- Variations were proposed and discussed, but dismissed

RTO restart vs. TLP

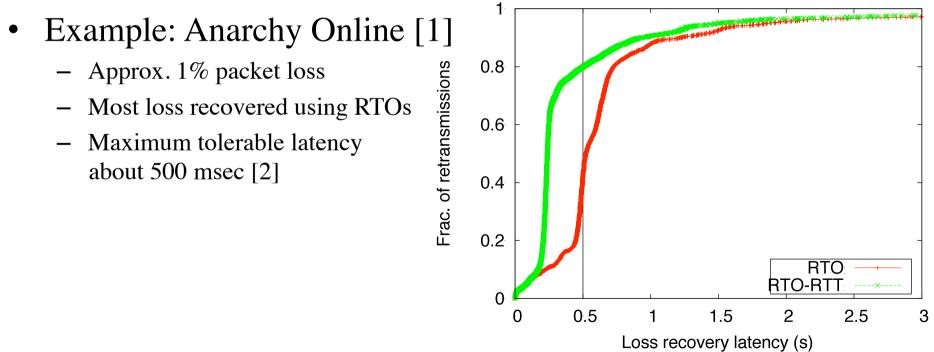
- RTO restart
 - focus on thin streams, limited to max. 4 outstanding segments
 - makes the RTO timer expire after exactly RTO seconds more often
- TLP
 - send up to two "probe segments" when a different (Probe Timeout, PTO) timer fires
 - PTO timer is set to 2 RTTs, which is sometimes smaller than the RTO
 - Spurious PTO is not a big deal compared to spurious RTO

Example: thin stream

- App-limited case
 - TLP: a "probe segment" is a new segment if new data is available, *else a retransmission*
 - PTO applies to max. 2 packets, RTO restart applies to max. 3 packets
 - PTO fires after 2 RTTs, RTO restart fires after ("correct") RTO

Example: repeated web downloads

- End of a larger window
 - TLP: PTO timer fires after 2 RTTs
 - Spurious PTO: send up to 2 unnecessary packets
 - Spurious RTO from RTO restart: impact worse, but:
 - Unlikely because of RTO variation "safety net"
 - Spurious RTO's effect limited if application's sending pause > RTO (cwnd should become RW anyway)

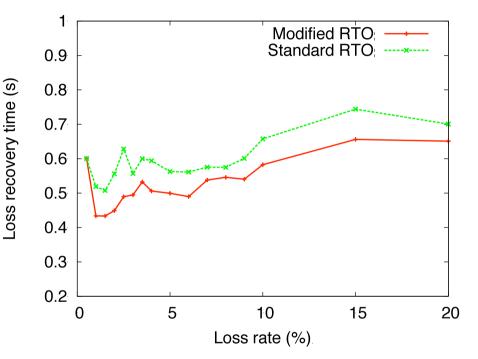

Backup slides

What if we use both?

- TLP could kick in in situations where RTO restart does not
- TLP could overrule (= retransmit packets earlier) RTO restart in cases where (# outstanding segments < 4) and no new segments are available for transmission.
- RTO restart reduces the probability that TLP is activated because PTO might be farther than RTO

Faster Recovery Needed?

- One extra RTT could lead to performance problems for short-lived (e.g. web) and thin streams
 - Thin streams are flows that only use a fraction of the available bandwidth (e.g. signaling, online games, chat, VoIP, ...)
 - IETF 78: <u>http://www.ietf.org/proceedings/78/slides/iccrg-4.pdf</u>



[1] A. Petlund, P. Halvorsen, P. F. Hansen, T. Lindgren, R. Casais, C. Griwodz "Network Traffic from Anarchy Online: Analysis, Statistics and Applications", In Proc of ACM MMSys, February 2012.

[2] M. Claypool and K. Claypool, "Latency and Player Actions in Online Games", In Communications of the ACM, November 2006.

Performance

- Initial simulations
 - Ns-3 (with real Linux TCP)
 - Short-lived flows
 - Multiple clients served by one host
 - Large set of bw's and delays
- Results show that
 - Loss recovery times are reduced with approximately 1 RTT on average
 - The amount of spurious RTOs is slightly higher than for regular TCP (<1% more)
- New experiments underway
 - Congestion losses
 - New RTO management alg.
 - To investigate burst situations more thoroughly

Results from 200 concurrent flows with 100 ms RTT