Problem Statement and Requirements for a More Accurate ECN Feedback

tcpm - 85. IETF Atlanta - Nov 6, 2012

draft-kuehlewind-tcpm-accecn-reqs-00

Mirja Kühlewind <mirja.kuehlewind@ikr.uni-stuttgart.de> Richard Scheffenegger <rs@netapp.com>

Explicit Congestion Notification (ECN)

- allows marking packets instead of dropping in case of congestion
- but provides only one congestion feedback signal per RTT and
- does not announce the total number of marking to the sender
- → New TCP mechanisms need to know how many congestion markings occurred (ConEx, DCTCP and potentially other congestion control algorithms)
- → Standardize a new ECN feedback mechanism within TCP that continually feeds back the extent of congestion, not merely its existence

Requirements

Resilience

Take delayed ACK and ACK loss into account (also in situations of high congestion)

• Timely feedback

Deliver within one RTT (plus additional delays by delayed ACKs)

• Integrity

Detect misbehaving receiver or network node (as least as good as ECN Nonce)

• Accuracy (+ reliability)

Ensure to receive at least one congestion notification per RTT (as classic ECN)

 \rightarrow A sender must not assume to get the exact number of congestion marking in all situations

Complexity

Implementation should be as simple as possible and only a minimum of addition state information should be needed

Network load

Limit additional network load (when using additional header space or more frequent ACKs)

• Middlebox traversal

Provide a fallback in case of middelboxes dropping packets with new ECN feedback

Design Approaches

- Re-use of ECN/Nonce (ECE, CWR, NS) Header Bits
 - For capacity negotiation in TCP handshake (*draft-briscoe-conex-re-ecn-tcp*)
 - 1 bit scheme = send ECE once for every CE received (DCTCP and draft-kuehlewind-tcpmaccurate-ecn-00)
 - 3 bit CE counter (*draft-briscoe-conex-re-ecn-tcp*)
 - codepoint scheme (*draft-kuehlewind-tcpm-accurate-ecn-01*)
- Re-use of other Header Bits

2 bit counter scheme plus additional bits of the TCP Urgent Pointer field if not needed otherwise (*Bob Briscoe*)

- Use of Reserved Bits
 - Use of above proposed schemes in addition to the classic ECN (reliable feedback per RTT)
 - Extend schemes above to improve robustness against ACK lost
- TCP Option
 - In addition to classic ECN or one of the proposed schemes (*draft-kuehlewind-tcpm-accurate-ecn-option*)
 - Additional option space can be used to provide further information as exact number of marker/lost bytes

1 Bit Scheme

- Send one ECE for each CE received (use CWR in subsequent ACK to increase redundancy)
- Use delayed ACK only if CE status does not change, otherwise send ACK immediately

Discussion

- ACK loss
 - Loss of two subsequent ACKs could result in complete loss of the congestion information
 - Proposed immediate ACK scheme can increase ACK (in worst case to one ACK per data packet)
- ECN Nonce

NS bit is not used otherwise

Pro: Low complexity and ECN Nonce integrity check supported

Contra: Low robustness against ACK loss

Use ECE, CWR (and NS) to send least significant bit of CE counter in every ACK

Discussion

- ACK loss
 - 3 bit counter provides robustness against 4 subsequence ACK losses with delayed ACKs
 - Use of additional header bits (e.g. Urgend Pointer field) can improve robustness
- ECN Nonce

3 bit counter does use the NS but does not implement any other integrity check

Pro: Quite low complexity

Contra: No integrity check

3 Bit Codepoint Scheme

- Use ECE, CWR, and NS bit to encode 8 codepoint (5 for CE counter and 3 for ECT(1) counter as ECN Nonce)
- See https://datatracker.ietf.org/ipr/1881/

Discussion

- ACK loss
 - Up-to two consecutive ACKs with 100% CE marking rate can be tolerated
 - At low congestion higher numbers of consecutive ACKs may be lost
- ECN Nonce

Provides more accurate information than ECN Nonce

Pro: Resiliency and integrity

Contra: Complexity

TCP Option

- Negotitation in TCP handshake with an abbreviated option
- 1 or 2 byte counter of ECT(0), ECT(1), CE, non-ECT, and lost packets plus total bytes of CE marked packets
- → Always in addition to ECE, CWR, and NS bits in TCP header (no matter if used for classic ECN or a new ECN feedback scheme)

Note: Using Classic ECN in addition can provide at least one congestion feedback signal per RTT reliably

Pro: High accuracy also for integrity check

Contra: Additional header space need in all (?) packets, problem with middelboxes?