

draft-dukkipati-tcpm-tcp-loss-probe-00

N. Dukkipati, N. Cardwell, Y. Cheng, M. Mathis

TCPM WG @IETF 85, 6 Nov 2012.

Tail drops

TCP recovers tail drops in two ways

- 1. Fast: send more new data to trigger FR (limited-transmit)
- 2. Slow: timeout

For Web traffic the situation is terrible

- 1. Often no new data to "probe"
- 2. Timeout is slow and has collateral damage
 - a. RTO is not seasoned yet
 - b. Retransmit & slow-start from cwnd of 1
- 3. Tail drops are very common
 - a. 70% losses on Google.com are recovered by timeout

Idea: within 1-2 RTTs, retransmit the last packet to trigger FR

TLP example

When to send TLP?

TLP is scheduled only if PTO < RTO.

- Experimenting with
 - Extend RTO to alway send TLP
 - Only send TLP if PTO < RTO SRTT

Corner case: sender with 1 packet in flight

Won't react to the single drop repaired by TLP

Solution 1: make one packet like N>1 packets

- Retransmits only the last byte
- What if the sender only send 1 byte?

Solution 2: react to the later DUPACKs by spurious TLP

Complex to get right

Solution 3: don't do TLP in this case

Solution 3: just ignore it

ER, TLP, RTO-restart, F-RTO

	ER	TLP	RTO-restart	F-RTO
Scenarios	#dupacks < dupthresh	Tail drops	Tail drops	Timeout
Idea	Smaller dupthresh	Send last or new packet before RTO	offsetting timeout by sndbuf q delay	send new data on timeout
Pros	2RTT recovery time	3RTT recovery time	Shorter timeout	Avoid spurious timeout setting cwnd to 1
Implementation Complexity	Small - medium	Medium	Small?	Large
need SACK	no	yes. FACK.	no	no
Status	Linux default	Linux?	?	Linux default, FreeBSD

WG adoption

- Work in progress
 - Experiment with different PTOs and probes
 - A parity packet (FEC)
 - Upstream to Linux
 - A research paper
 - Merge ER, F-RTO, TLP together?
- Enough interests for WG adoption?

Detecting TLP repaired losses

- Problem: congestion control not invoked if TLP repairs loss and the only loss is last segment.
- Approach 1: Count DUPACKs for TLP
 - TLP episode: N consecutive TLP segments for same tail loss.
 - End of TLP episode: ACK above SND.NXT.
 - No loss: sender receives N TLP dupacks before episode ends.
 - Loss: sender recvs <N TLP dupacks.
- Approach 2: Restrict TLP retransmission to 1-byte.
- We are experimenting both

Relating TLP to RTO Restart draft

- TLP and RTO Restart are philosophically not coherent.
- View-point of TLP
 - Try fast recovery as far as possible, use RTO as last resort.
 - Push RTO farther away to be always able to schedule a TLP.
 - A spurious probe is less risky than a spurious RTO.
- View-point of RTO Restart
 - Make RTOs more "tight" while being RFC-compliant.
- Difference in scope
 - RTO Restart used when #outstanding segments <= 3.
 - TLP used only for SACK enabled connections.