Operational Issues with Tunnel Maximum Transmission Unit (MTU)

Boeing Research & Technology
Fred Templin (fred.l.templin@boeing.com)
11/08/2012
The Problem

• De facto “Internet Cell Size” is 1500 bytes
• Tunnels add encapsulation overhead that reduces the effective path MTU
• Tunnels often adapt by setting a conservative and fixed MTU (e.g., 1480 bytes). However:
 • Path MTU Discovery messages are often filtered
 • IP fragmentation is problematic
 • Larger packets that might make it through the tunnel in one piece are discarded at the ingress
• Issues apply to tunnels over both IPv4 and IPv6
Path MTU Discovery (PMTUD) Issues

- When a too-large packet is dropped at the tunnel ingress:
 - Packet Too Big (PTB) message produced by the ingress may be dropped on the path to the original source
- When a too-large packet is dropped inside the tunnel:
 - PTB message may be dropped on the path to the tunnel ingress, or
 - PTB message may not contain enough information for translation into PTB to send back to the original source, or
 - PTB message may be fabricated by an adversarial middlebox within the tunnel
IP Fragmentation Issues

- Original source could use IP fragmentation *before* encapsulation
- Tunnel ingress could use IP fragmentation *after* encapsulation

However:
- For IPv4, IP_ID is only 16bits
- For IPv6 (and probably also IPv4) middleboxes are being configured more and more to drop all IP fragments
Current Mitigations

• As a result, common tunnel types set a fixed and static MTU of at most 1500 minus the length of the encapsulation headers (e.g., 1480 bytes for IPv6-in-IPv4)

• However:
 • Minimum MTU is only 1280 bytes for IPv6 and 576 (68?) bytes for IPv4 so there is no way to set a “low enough” static MTU
 • MTU loss within the tunnel still result in black holes
 • Especially problematic for tunnels-within-tunnels
Alternative Approach

• Tunnel ingress could use “tunnel fragmentation” *before* encapsulation
 • application-layer segmentation (the tunnel ingress is the “application”)
 • Reassembly performed by the tunnel egress
 • Each segment appears as an individual IP packet on the wire (i.e., and not as an IP fragment)
 • Extra “mid-layer” of encapsulation needed
Other Considerations

• The tunnel should set an indefinite MTU (i.e., admit all packets into the tunnel regardless of their size and make any necessary adaptations from within the tunnel)

• “Take care of the smalls, and let the bigs take care of themselves”
 • Make sure packets no larger than 1500 get through
 • Let larger packets sink or swim on their own

• Assumes that original sources that send packets larger than 1500 use RFC4821
Problem Statement and Approach

• Operational Issues with Tunnel Maximum Transmission Unit (MTU)
 • draft-generic-v6ops-tunmtu
 • https://datatracker.ietf.org/doc/draft-generic-v6ops-tunmtu/

• The Subnetwork Encapsulation and Adaptation Layer (SEAL)
 • RFC5320 (early experimental version)
 • draft-templin-intarea-seal (SEAL(bis))
 • https://datatracker.ietf.org/doc/draft-templin-intarea-seal/