
Safety against Clickjacking / UI
Redressing Attacks

Brad Hill <bhill {at} paypal-inc.com>

Jeff Hodges <jeff.hodges {at} kingsmountain.com>

Clickjacking / UI Redressing

• A web resource or application can induce the
web user agent to include, frame or embed
another application from a different security
domain.

• In so doing, it may be able to convince the
user to interact with the nested application
out-of-context, by obscuring or modifying the
target application’s presentation to the user.

Two types of cross-origin mixing:

– Transclusion

– Framing / Embedding

Transclusion

• Content included inline
• Same browsing context / DOM

• E.g. images, fonts, css, <script src=>

• Once transcluded, part of the total instantiated

resource / application, single effective origin for
access control

• NOT IN SCOPE FOR THIS WORK

Framing / Embedding

• Explicitly distinct browsing contexts, with
different security principals (origins) and
enforced security boundaries

– frames / iframes

– Some plugin content using object/embed tags

• Attacks arise due to incomplete isolation at
the User Interface level

Difficult problem to solve

• User Interface context mixing is by design and
a desirable property of the web user agent
– Except when it isn’t

• No unambiguous fixes possible at the protocol
or browsing context security model

• Diversity of user agent / user interface
features:
– Modal vs. multi-window, mouse vs. touch, voice or

assistive technologies

X-Frame-Options Header

• DENY, SAMEORIGIN, [ALLOW-FROM]

– All-or-nothing means that use cases which require
framing cannot use this policy

• Application authors need more granularity:

– Allow, and apply protections if possible

– Only allow if possible to apply protections

– Report, don’t block, if things look suspicious

“UI Safety” spec @ W3C WebAppSec

http://dvcs.w3.org/hg/user-interface-safety/raw-
file/tip/user-interface-safety.html

• Use Content Security Policy header to convey UI safety
requirements and tuning hints to the user agent

• Non-normative recommendations on how to apply
such recommendations at the user agent
– Screenshot comparisons to detect overlays, repositioned

content

– Click timing measurements

– Etc.

http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html

From the application owner’s perspective,
features of XFO and UI Safety are part of a single
risk management policy around how the web
user agent manages the application’s user
interface.

Going forward, it may make the most sense to
define both policy pieces in the same spec.

Advantages to moving XFO features to
CSP UI Safety specification:

• If UI Safety directives are specified and
understood by the user agent, they apply
exclusively

• XFO policy applied by user agents that does
not understand or find a CSP UI Safety
directive for a resource

Clearest policy combination
mechanism for resource owners.

XFO features can take advantage of
CSP features

• CSP specifies a reporting channel and is
developing a DOM API

– Application authors may wish to use these for risk
management with the XFO features

• Re-use CSP definition of origin

– Likely source of error to require authors to
continue to use two syntaxes and two headers to
express one intention

Single conveyance mechanism may
give broader adoption

• XFO policies really are associated to the content
user interface, not the protocol

• Chrome extensions have a way to set a Content
Security Policy in the application manifest, do not
have a way to set XFO

• Widgets, app cache, etc.
– All could have a mechanism to attach or persist XFO

and CSP, but easier to just do one

