Web PKI: Background and Issues
Web PKI Operations BoF (WPKops)

Jeff Hodges
Brad Hill
PayPal

IETF-85 Atlanta
5-Nov-2012
What is the “Web PKI”?

• The Public Key Infrastructure (PKI) that is
 – Embedded in various software packages/components..
 • HTTPS clients
 – Notably Web Browsers
 – Operating Systems, Mobile Apps
 – OpenSSL, curl, wget, Java, Ruby, Python
 • Web Servers
 • Certification Authorities
 – Deployed pervasively across the Internet
 – Highly user visible
 – Depends upon a particular (complex) object shared amongst participating software: *Public Key Certificates*
The Players

• End users
 – “Are there any issues with my present use of this web app? Is it secured?”

• Certificate Holders
 – AKA “web application providers”

• Hardware & Software Providers
 – E.g. Browser vendors, web server vendors, TLS/SSL Concentrators etc.

• Certificate Issuers
 – AKA certificate authorities (CAs)
Web PKI Issues

- There are issues with the presently-deployed Web PKI affecting all the players:
 - Web PKI is specified in IETF PKIX specs
 - Which profile ITU-T X.509 specs
 - Originally concocted in mid-1990’s (pushing 20yrs)
 - All these specs have evolved
 - Complicated; many “options”
 - Prone to interpretation by implementers in various places
Web PKI Issues [2]

• WebPKI-encompassing software packages/components have:
 – Evolved over time
 – Individual interpretations of PKIX specs
• Yields user-visible inconsistent behavior
Web PKI Issues [3]

- Certificate holders (Web App Providers)
 - Uncertainty regarding user agent behavior relative to:
 - Web App’s presented certificate & cert chain
 - CA’s OCSP/CRL services
 - Can result in:
 - different user experiences between UAs
 - some users not being able to use web app
 - Security vulnerabilities
Web PKI Issues [4]

• Certificate Issuers (CAs) challenges regarding:
 – Certificate complexities
 • accurate/correct AIA info
 • Subject naming conventions
 – CRL and OCSP content/operational complexities
 • Which clients accept what spec interpretations?
 • E.g., necessary to include nonce in OCSP response?
 • Client cert chain processing peculiarities?
Web PKI Issues [5]

• End users
 – Inconsistency across browsers in terms of
 • Behavior given cert contents, cert chain, and cert status checking
 • Security indicators
 – Web apps “breaking” due to impedance mismatch between
 • presented cert(s) + revocation infrastructure
 ..and..
 • browser implementations
Web PKI Issues [6]

• Multi-stakeholder
 – Revocation checking and performance
 • As a cert holder, what is your CA doing?
 • How does that really affect performance for your clients?
 • GET vs. POST, cache-ability of responses
 • Impact of / requirements for Stapling
 – IDNA
 • Different versions
 • Complex chain of rules/validation between registrars, CAs, certification validation code and URL bar display rules
Example Issues to Survey

• Criticality of the nameConstraints extension
• Use of the OCSP "good" certStatus value
• Behavior of IRIs, IDNA 2003 vs. 2008, Unicode restriction profiles