RTCP XR Block for Summary Statistics Metric Reporting

draft-ietf-xrblock-rtcp-xr-summary-stat-02

Glen Zorn (glenzorn@gmail.com)
Roland Schott (roland.schott@telekom.de)
Qin Wu (bill.wu@huawei.com)
Rachel Huang (rachel.huang@huawei.com)
Updates Since 00 Version

• Improved SDP section
 – Added a subsection to include the extended syntax.
 – Added a subsection to clarify SDP Offer/Answer usage

• Editorial changes
 – Fixed the description misplacing problem of “Interval Metric Flag” and “Reserved” fields in burst/gap discard summary statistics block.
 – Fixed the name and order mismatching problem of the statistics fields in frame impairment statistics summary block.

• updated references
 – Updating some reference to the latest version.
Issue# Choosing Discard Type

• In the last meeting one issue raised was how to choose discard type since 4 discard type is defined in the Discard metric block.
 – It was agreed on the list to use a single instance of the discard count block with DT-3 as one option since it is more straightforward to know the total discard.

• Another option has been raised in the mailing list:
 – Could we use 2 instances of the discard count block with DT=1 and DT=2 included in the same RTCP compound packet?
 – Calculate the total discard as the sum of packet discards due to early arrival (DT=1) and packet discards due to late arrival (DT=2).

• In current draft, we take both options. Any other options?
Issue# Terminology Inconsistency

- The third block is application level metrics which are about statistics of frames and applicable to any video codecs.
- The problem is that some codecs don’t use the term “frame” to indicate their application data packet.
 - H.264 using “access units” and “IDR Picture”.
- Our proposal:
 - Change the definition of “Picture Type” to include the terminology of H.264 as follows:

NEW TEXT:

```
Picture Type
    Picture types used in the different video algorithms compose of the key frame and the Derived frame. Key frame is also called a
    intra-coded frame [H.222.0] or IDR picture [H.264] and used as a reference frame for predicting other pictures. It is coded without prediction from other pictures. The Derived frame is derived from Key-frame using prediction.
```

1/8/13 xrblokc IETF 85 Atlanta
Next Steps

• Make decisions on open issues
• Create new version to address the opens issues
• Comments?