Automated prefix allocation in IS-IS
draft-baker-ipv6-isis-automatic-prefix-00

Abstract

This note describes a TLV and associated mechanisms for the allocation of /64 prefixes from a less specific prefix.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 23, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

This note recommends an approach to the automated allocation of /64 prefixes within a network. This not something that will be done in a heavily-managed network, but may be appropriate in networks with light management, such as residential and SOHO networks.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Theory of Operation

The premise is that some party allocates a prefix to a network, such as a PA /48 or /56. The obvious way is using DHCP-PD [RFC3633], although that is not actually required.

IS-IS [ISO.10589.1992] represents those destinations as a type-length-value field that identifies an address. For CLNS, it was designed to the ISO NSAP; by various extensions, it also handles IPv4 and IPv6 prefixes and their counterparts for other protocols. In this model, we add a TLV to advertise the delegated prefix, with the expectation that routers in the network (including pseudo-nodes) will allocate more specific prefixes from that prefix.
In short, some specified system in the network, potentially a configuration management system or the CPE router facing an upstream network, is configured with an autoconfiguration prefix, and manages the use of that prefix in the network.

2.1. Autoconfiguration TLV Advertisement

Upon recognizing that it has been configured with a prefix and that the network management policy is for autoconfiguration, the system in question advertises the autoconfiguration prefix described in Section 3 within the intended area or network.

2.2. Subnet prefix allocation and announcement

Each router advertising a Reachability TLV [RFC5308], including a pseudonode on a LAN, when it receives the Autoconfiguration TLV Advertisement, calculates and announces a more specific prefix from the advertised autoconfiguration prefix in a Reachability TLV. This prefix is chosen at random, but may not collide with any prefix currently advertised within the network and therefore in the LSP database.

There are obvious caveats here: if the autoconfiguration prefix is too long and as a result there are more LANs than there are prefixes to allocate to them, the procedure breaks down badly, and if there are just exactly enough, it may take time to converge. Hence, from an operational perspective, the autoconfiguration prefix should have enough /64 more specific prefixes, and from an implementation perspective, the randomization function must be sufficiently robust, that independent choices are unlikely to collide.

In the event of collision, which is likely to happen from time to time, it is up to the nodes advertising the prefix in question to detect and resolve the situation. Upon receiving an LSP containing its "own" prefix advertised by another router, each router waits CollisionDetect (10) seconds, to give the network ample opportunity to detect the issue. It then waits an additional random interval between zero and CollisionDetect seconds, to randomize the recovery process and maximize the chance that replacement prefixes do not collide. It then allocates a new prefix following the procedure described in this section, and re-announces its LSP, removing (and therefore withdrawing) the offending reachability TLV, and instead announcing the new one.
Subsequent procedures, such as the advertisement of Router Advertisement using the allocated prefix or DHCPv6 allocation of addresses, may start CollisionDetect seconds after the LSP has been announced if no collision has been detected. At this point, routers MAY store their /64s in non-volatile storage.

2.3. Autoconfiguration TLV Withdrawal

When the prefix advertised in the Autoconfiguration TLV expires or is withdrawn, the Autoconfiguration TLV is withdrawn from the network. Upon detection of the withdrawal, each router in the network MUST withdraw any addresses or prefixes dependent on it. If those prefixes are stored in non-volatile storage, they MUST also be removed.

2.4. Renumbering using autoconfiguration

[RFC4192] describes the process of renumbering in some detail. The discussion here is somewhat simplistic; refer to that for a more detailed discussion.

In short, "renumbering" a network is a special case of "numbering" a network. If there is one prefix in use in a network and it is withdrawn, the network will experience an outage. Hence, it is generally advisable to ensure that there are at least two prefixes in use in a network when one of them is removed. This might be accomplished by simply using multiple prefixes in the network; it might also be accomplished by deploying a second autoconfiguration prefix minutes or hours before the "old" one is removed. During that time, DNS and DHCP databases need to be updated as described in [RFC4192] to reflect the new prefix.

If an outage is acceptable, it is also possible to renumber using the same prefix. For this, the administration withdraws the prefix as described in Section 2.3 and waits until the process is complete. There are two obvious ways to determine completion:

- Wait long enough that it is highly unlikely to have not completed, which might be the number of routers in the network diameter times the LSP update retransmission interval, or

- Wait until the managing router’s LSP database contains no Reachability TLVs that depend on the prefix.

At this point, any systems that are only using that prefix are now unreachable using global addressing.
At this point, the managing system may re-advertise the prefix as described in Section 2.1, and the routers in the network will re-allocate prefixes as described in Section 2.3.

3. IPv6 Autoconfiguration TLV

The structure of the Autoconfiguration TLV is as follows:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Type = IANA | Length   |U|X|   Reserve |  Prefix Len   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Prefix ...                                          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
* - if present
U - up/down bit
X - external original bit
```

Figure 1: Autoconfiguration TLV

As is described in [RFC5305]: "The up/down bit SHALL be set to 0 when a prefix is first injected into IS-IS. If a prefix is advertised from a higher level to a lower level (e.g. level 2 to level 1), the bit SHALL be set to 1, indicating that the prefix has traveled down the hierarchy. Prefixes that have the up/down bit set to 1 may only be advertised down the hierarchy, i.e., to lower levels".

If the prefix was distributed into IS-IS from another routing protocol, the external bit SHALL be set to 1. This information is useful when distributing prefixes from IS-IS to other protocols.

The prefix is "packed" in the data structure. That is, only the required number of octets of prefix are present. This number can be computed from the prefix length octet as follows:

\[
\text{prefix octets} = \text{integer of } ((\text{prefix length} + 7) / 8)
\]

4. IANA Considerations

This section will request an identifying value for the TLV defined. This is deferred to the -01 version of the draft.

5. Security Considerations

To be considered.
6. Privacy Considerations
 To be considered.

7. Acknowledgements

8. Change Log
 Initial Version: February 2013

9. References

9.1. Normative References

9.2. Informative References

Author’s Address

Fred Baker
Cisco Systems
Santa Barbara, California 93117
USA

Email: fred@cisco.com
IS-IS Flooding Scope LSPs
draft-ginsberg-isis-fs-lsp-00.txt

Abstract

Intermediate System To Intermediate System (IS-IS) provides efficient and reliable flooding of information to its peers. However the current flooding scopes are limited to either area wide scope or domain wide scope. There are existing use cases where support of other flooding scopes are desirable. This document defines new Protocol Data Units (PDUs) which provide support for new flooding scopes as well as additional space for advertising information targeted for the currently supported flooding scopes.

The protocol extensions defined in this document are not backwards compatible with existing implementations and so must be deployed with care.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 13, 2013.
Table of Contents

1. Introduction .. 4
2. Definition of New PDUs 5
 2.1. Flooding Scoped LSP Format 5
 2.2. Flooding Scoped CSNP Format 8
 2.3. Flooding Scope PSNP Format 9
3. Flooding Scope Update Process Operation 11
 3.1. Scope Types ... 11
 3.2. Operation on Point-to-Point Circuits 11
 3.3. Operation on Broadcast Circuits 12
 3.4. Use of Authentication 12
4. Deployment Considerations 12
5. Graceful Restart Interactions 13
6. Multi-instance Interactions 13
7. Circuit Scoped Flooding 13
8. Extending LSP Set Capacity 13
9. Domain Scoped Flooding 14
10. Announcing Support for Flooding Scopes 15
11. IANA Considerations ... 16
12. Security Considerations 17
13. Acknowledgements .. 17
14. References .. 17
 14.1. Normative References 17
 14.2. Informational References 18
Authors’ Addresses ... 18
1. Introduction

The Update Process as defined by [IS-IS] provides reliable and efficient flooding of information to all routers in a given flooding scope. Currently the protocol supports two flooding scopes and associated Protocol Data Units (PDUs). Level 1 (L1) Link State PDUs (LSPs) are flooded to all routers in an area. Level 2 (L2) LSPs are flooded to all routers in the Level 2 sub-domain. The basic operation of the Update Process can be applied to any subset of the routers in a given topology so long as that topology is not partitioned. It is therefore possible to introduce new PDUs in support of other flooding scopes and utilize the same Update Process machinery to provide the same reliability and efficiency which the Update Process currently provides for L1 and L2 scopes. This document defines these new PDUs and the modified Update Process rules which are to be used in supporting new flooding scopes.

New deployment cases have introduced the need for reliable and efficient circuit scoped flooding. For example, Appointed Forwarder information as defined in [RFC6326] needs to be flooded reliably and efficiently to all R Bridges on a broadcast circuit. Currently, only Intermediate System to Intermediate System Hellos (IIHs) have the matching scope - but IIHs are unreliable i.e. individual IIHs may be lost without affecting correct operation of the protocol. To provide reliability in cases where the set of information to be flooded exceeds the carrying capacity of a single PDU requires sending the information periodically even when no changes in the content have occurred. When the information content is large this is inefficient and still does not provide a guarantee of reliability. This document defines circuit scoped flooding in order to provide a solution for such cases.

Another existing limitation of [IS-IS] is the carrying capacity of an LSP set. It has been noted in [RFC5311] that the set of LSPs that may be originated by a system at each level is limited to 256 LSPs and the maximum size of each LSP is limited by the minimum Maximum Transmission Unit (MTU) of any link used to flood LSPs. [RFC5311] has defined a backwards compatible protocol extension which can be used to overcome this limitation if needed. While the [RFC5311] solution is viable, in order to be interoperable with routers which do not support the extension it imposes some restrictions on what can/cannot be advertised in the Extended LSPs and requires allocation of multiple unique system IDs to a given router. A more flexible and less constraining solution is possible if interoperability with legacy routers is not a requirement. As the introduction of new PDUs required to support new flooding scopes is by definition not interoperable with legacy routers, it is possible to simultaneously introduce an alternative solution to the limited LSP set carrying...
capacity as part of the extensions defined in this document. This capability is also defined in this document.

The PDU type field in the common header for all IS-IS PDUs is a 5 bit field. The possible PDU types supported by the protocol are therefore limited to a maximum of 32. In order to minimize the need to introduce additional PDU types in the future, the new PDUs introduced in this document are defined so as to allow multiple flooding scopes to be associated with the same PDU type. This means if new flooding scopes are required in the future the same PDU type can be used.

2. Definition of New PDUs

In support of new flooding scopes the following new PDUs are required:

- Flooding Scoped LSPs (FS-LSPs)
- Flooding Scoped Complete Sequence Number PDUs (FS-CSNPs)
- Flooding Scoped Partial Sequence Number PDUs (FS-PSNPs)

Each of these PDUs is intentionally defined with a header as similar in format to the corresponding PDU types currently defined in [IS-IS] as possible. Although it might have been possible to eliminate or redefine PDU header fields in a new way the existing formats are retained in order to allow maximum reuse of existing PDU processing logic in an implementation.

Note that in the case of all FS PDUs, the Maximum Area Addresses field in the header of the corresponding standard PDU has been replaced with a Scope field. The maximum area addresses checks specified in [IS-IS] are therefore not performed on FS PDUs.

2.1. Flooding Scoped LSP Format

An FS-LSP has the following format:

```
+-------------------------+  No. of octets
| Intradomain Routeing   |     1
| Protocol Discriminator |
+-------------------------+  1
| Length Indicator       |     1
+-------------------------+  1
| Version/Protocol ID    |     1
| Extension              |
```

Internet-Draft draft-ginsberg-isis-fs-lsp-00.txt February 2013

+-------------------------+
| ID Length | 1
+-------------------------+
| R|R|R| PDU Type | 1
+-------------------------+
| Version | 1
+-------------------------+
| Reserved | 1
+-------------------------+
| R| Scope | 1
+-------------------------+
| PDU Length | 2
+-------------------------+
| Remaining Lifetime | 2
+-------------------------+
| FS LSP ID | ID Length + 2
+-------------------------+
| Sequence Number | 4
+-------------------------+
| Checksum | 2
+-------------------------+
| Reserved|LSPDBOL|IS Type | 1
+-------------------------+
: Variable Length Fields : Variable
+-------------------------+

Intradomain Routeing Protocol Discriminator - 0x83
(as defined in [IS-IS])

Length Indicator - Length of the Fixed Header in octets

Version/Protocol ID Extension - 1

ID Length - As defined in [IS-IS]

PDU Type - 10 (Subject to assignment by IANA) Format as defined in [IS-IS]

Version - 1

Reserved - transmitted as zero, ignored on receipt

Scope - Bits 1-7 define the flooding scope. The value 0 is reserved and MUST NOT be used. Received FS-LSPs with a scope of 0 MUST be ignored.

Bit 8 is Reserved which means it is transmitted as 0 and ignored on receipt.
PDU Length - Entire Length of this PDU, in octets, including the header.

Remaining Lifetime - Number of seconds before this FS-LSP is considered expired.

FS LSP ID - the system ID of the source of the FS-LSP. One of the following two formats is used:

FS LSP ID Standard Format

+-------------------------+-------------------------+
Source ID	ID Length
Pseudonode ID	1
FS LSP Number	1
+-------------------------+-------------------------+

FS LSP ID Extended Format

+-------------------------+-------------------------+
| Source ID | ID Length |
| Extended FS LSP Number | 2 |
+-------------------------+-------------------------+

Which format is used is specific to the Scope and MUST be defined when the specific flooding scope is defined.

Sequence Number - sequence number of this FS-LSP

Checksum - Checksum of contents of FS-LSP from Source ID to end. Checksum is computed as defined in [IS-IS].

Reserved/LSPDBOL/IS Type

 Bits 4-8 are reserved, which means they are transmitted as 0 and ignored on receipt.

LSPDBOL - Bit 3 - A value of 0 indicates no FS-LSP Database Overload and a value of 1 indicates that the FS-LSP Database is overloaded. The overload condition is specific to FS-LSPs with the scope specified in the scope field.

IS Type - Bits 1 and 2. The type of Intermediate System as defined in [IS-IS].
Variable Length Fields which are allowed in an FS-LSP are specific to the defined scope.

2.2. Flooding Scoped CSNP Format

An FS-CSNP has the following format:

<table>
<thead>
<tr>
<th>Field</th>
<th>No. of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intradomain Routeing Protocol Discriminator</td>
<td>1</td>
</tr>
<tr>
<td>Length Indicator</td>
<td>1</td>
</tr>
<tr>
<td>Version/Protocol ID Extension</td>
<td>1</td>
</tr>
<tr>
<td>ID Length</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
<tr>
<td>Reserved</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>Scope</td>
</tr>
<tr>
<td>PDU Length</td>
<td>2</td>
</tr>
<tr>
<td>Source ID</td>
<td>ID Length + 1</td>
</tr>
<tr>
<td>Start FS-LSP ID</td>
<td>ID Length + 2</td>
</tr>
<tr>
<td>End FS-LSP ID</td>
<td>ID Length + 2</td>
</tr>
</tbody>
</table>

: Variable Length Fields : Variable

Intradomain Routeing Protocol Discriminator - 0x83
(as defined in [IS-IS])

Length Indicator - Length of the Fixed Header in octets

Version/Protocol ID Extension - 1

ID Length - As defined in [IS-IS]
PDU Type - 11 (Subject to assignment by IANA) Format as defined in [IS-IS]

Version - 1

Reserved - transmitted as zero, ignored on receipt

Scope - Bits 1-7 define the flooding scope. The value 0 is reserved and MUST NOT be used. Received FS-CSNPs with a scope of 0 MUST be ignored.
Bit 8 is Reserved which means it is transmitted as 0 and ignored on receipt.

PDU Length - Entire Length of this PDU, in octets, including the header.

Source ID - the system ID of the Intermediate System (with zero Circuit ID) generating this Sequence Numbers PDU

Start FS-LSP ID - The FS-LSP ID of the first FS-LSP with the specified scope in the range covered by this FS-CSNP.

End FS-LSP ID - The FS-LSP ID of the last FS-LSP with the specified scope in the range covered by this FS-CSNP.

Variable Length Fields which are allowed in an FS-CSNP are limited to those TLVs which are supported by standard CSNP.

2.3. Flooding Scope PSNP Format

An FS-PSNP has the following format:

+-------------------------+ No. of octets
| Intradomain Routeing | 1
<table>
<thead>
<tr>
<th>Protocol Discriminator</th>
</tr>
</thead>
</table>
| Length Indicator | 1
|-------------------------|
| Version/Protocol ID | 1
<table>
<thead>
<tr>
<th>Extension</th>
</tr>
</thead>
</table>
| ID Length | 1
|-------------------------|
| R|R|R| PDU Type | 1
|-------------------------|
| Version | 1
Intradomain Routing Protocol Discriminator - 0x83
(as defined in [IS-IS])

Length Indicator - Length of the Fixed Header in octets

Version/Protocol ID Extension - 1

ID Length - As defined in [IS-IS]

PDU Type - 12 (Subject to assignment by IANA) Format
as defined in [IS-IS]

Version - 1

Reserved - transmitted as zero, ignored on receipt

Scope - Bits 1-7 define the flooding scope. The value 0 is reserved
and MUST NOT be used. Received FS-PSNPs with a scope of 0 MUST
be ignored.

U - Bit 8 - A value of 0 indicates that the specified
flooding scope is supported. A value of 1 indicates
that the specified flooding scope is unsupported. When
U = 1, variable length fields other than authentication
MUST NOT be included in the PDU.

PDU Length - Entire Length of this PDU, in octets, including
the header.

Source ID - the system ID of the Intermediate System
(with zero Circuit ID) generating this Sequence Numbers PDU

Variable Length Fields which are allowed in an FS-PSNP are
limited to those TLVs which are supported by standard PSNPs.
3. Flooding Scope Update Process Operation

The Update Process as defined in [IS-IS] maintains a Link State Database (LSDB) for each level supported. Each level specific LSDB contains the full set of LSPs generated by all routers operating in that level specific scope. The introduction of FS-LSPs creates additional LSDBs (FS-LSDBs) for each additional scope supported. The set of FS-LSPs in each FS-LSDB consists of all FS-LSPs generated by all routers operating in that scope. There is therefore an additional instance of the Update Process for each supported flooding scope.

Operation of the scope specific Update Process follows the Update Process specification in [IS-IS]. The circuit(s) on which FS-LSPs are flooded are limited to those circuits which are participating in the given scope. Similarly the sending/receiving of FS-CSNPs and FS-PSNPs is limited to the circuits participating in the given scope.

Consistent support of a given flooding scope on a circuit by all routers operating on that circuit is required.

3.1. Scope Types

A flooding scope may be limited to a single circuit (circuit scope). Circuit scopes may be further limited by level (L1 circuit scope/L2 circuit scope).

A flooding scope may be limited to all circuits enabled for L1 routing (area scope).

A flooding scope may be limited to all circuits enabled for L2 routing (L2 sub-domain scope).

Additional scopes may be defined which include all circuits enabled for either L1 or L2 routing (domain-wide scope).

3.2. Operation on Point-to-Point Circuits

When a new adjacency is formed, synchronization of all FS-LSDBs supported on that circuit is required. Therefore FS-CSNPs for all supported scopes MUST be sent when a new adjacency reaches the UP state. Send Receive Message (SRM) bit MUST be set for all FS-LSPs associated with the scopes supported on that circuit. Receipt of an FS-PSNP with the U bit equal to 1 indicates that the neighbor does not support that scope (although it does support FS PDUs). This MUST cause SRM bit to be cleared for all FS-LSPs with the matching scope which are currently marked for flooding on that circuit.
3.3. Operation on Broadcast Circuits

FS PDUs are sent to the same destination address(es) as standard PDUs for the given protocol instance. For specification of the defined destination addresses consult [IS-IS], [IEEEaq], [RFC6822], and [RFC6325].

The Designated Intermediate System (DIS) for a broadcast circuit has the responsibility to generate periodic scope specific FS-CSNPs for all supported scopes. A scope specific DIS is NOT elected as all routers on a circuit MUST support a consistent set of flooding scopes.

It is possible that a scope may be defined which is not level specific. In such a case the DIS for each level enabled on a broadcast circuit MUST independently send FS PDUs for that scope to the appropriate level specific destination address. This may result in redundant flooding of FS-LSPs for that scope.

3.4. Use of Authentication

Authentication TLVs MAY be included in FS PDUs. When authentication is in use, the scope is first used to select the authentication configuration that is applicable. The authentication check is then performed as normal. Although scope specific authentication MAY be used, sharing of authentication among multiple scopes and/or with the standard LSP/CSNP/PSNP PDUs is considered sufficient.

4. Deployment Considerations

Introduction of new PDU types is incompatible with legacy implementations. Legacy implementations do not support the FS specific Update process(es) and therefore flooding of the FS-LSPs throughout the defined scope is unreliable when not all routers in the defined scope support FS PDUs. Further, legacy implementations will likely treat the reception of an FS PDUs as an error. Even when all routers in a given scope support FS PDUs, if not all routers in the flooding domain for a given scope support that scope flooding of the FS-LSPs may be compromised. Therefore all routers in the flooding domain for a given scope SHOULD support both FS PDUs and the specified scope before use of that scope can be enabled.

The U bit in FS-PSNPs provides a means to suppress retransmissions of unsupported scopes. Routers which support FS PDUs SHOULD support the sending of PSNPs with the U bit equal to 1 when an FS-LSP is received with a scope which is unsupported. Routers which support FS PDUs SHOULD trigger management notifications when FS PDUs are received for
unsupported scopes and when PSNPs with the U bit equal to 1 are received.

5. Graceful Restart Interactions

[RFC5306] defines protocol extensions in support of graceful restart of a routing instance. Synchronization of all supported FS-LSDBs is required in order for database synchronization to be complete. This involves the use of additional T2 timers. Receipt of a PSNP with the U bit equal to 1 will cause FS-LSDB synchronization with that neighbor to be considered complete for that scope. See [RFC5306] for further details.

6. Multi-instance Interactions

In cases where FS-PDUs are associated with a non-zero instance the use of IID-TLVs in FS-PDUs follows the rules for use in LSPs, CSNPs, PSNPs as defined in [RFC6822].

7. Circuit Scoped Flooding

This document defines two circuit scoped flooding identifiers:

- Level 1 circuit scope (L1CS)
- Level 2 circuit scope (L2CS)

FS-LSPs with the scope field set to one of these values contain information specific to the circuit on which they are flooded. When received, such FS-LSPs MUST NOT be flooded on any other circuit. The FS LSP ID Extended format is used in these PDUs. The FS-LSDB associated with circuit scoped FS-LSPs consists of the set of FS-LSPs which both have matching circuit scope and are transmitted (locally generated) or received on a specific circuit.

The set of TLVs which may be included in such FS-LSPs is specific to the given use case and is outside the scope of this document.

8. Extending LSP Set Capacity

The need for additional space in the set of LSPs generated by a single IS has been articulated in [RFC5311]. When legacy interoperability is not a requirement, the use of FS-LSPs meets that need without the need for assigning alias system-ids to a single IS.
Two flooding scopes are defined for this purpose:

- Level 1 Scoped FS-LSPs (L1-FS-LSP)
- Level 2 Scoped FS-LSPs (L2-FS-LSP)

The FS LSP ID Extended format is used in these PDUs. This provides 64K of additional LSPs which may be generated by a single system at each level.

Lx-FS-LSPs are used by the level specific Decision Process (defined in [IS-IS]) in the same manner as standard LSPs (i.e., as additional information sourced by the same IS) subject to the following restrictions:

- A valid version of LSP #0 from the same IS at the corresponding Level MUST be present in the LSDB in order for the FS-LSP set to be usable.
- Information in an Lx-FS-LSP (e.g., IS-Neighbor information) which supports using the originating IS as a transit node MUST NOT be used when the Overload bit is set in LSP #0.
- Existing TLVs which are restricted to LSP #0 MUST NOT appear in Lx-FS-LSPs.

There are no further restrictions as to what TLVs may be advertised in FS-LSPs.

9. Domain Scoped Flooding

Existing support for flooding information domain wide (i.e., to L1 routers in all areas as well as to routers in the Level 2 sub-domain) requires the use of leaking procedures between levels. For further details see [RFC4971]. This is sufficient when the data being flooded domain-wide consists of individual TLVs. If it is desired to retain the identity of the originating IS for the complete contents of a PDU, then support for flooding the unchanged PDU is desirable. This document therefore defines a domain-wide flooding scope. FS-LSPs with this scope MUST be flooded on all circuits regardless of what level(s) are supported on that circuit.

The FS LSP ID Extended format is used in these PDUs.

Use of information in FS-LSPs for a given scope depends on determining the reachability to the IS originating the FS-LSP. This presents challenges for FS-LSPs with domain-scopes because no single
IS has the full view of the topology across all areas. It is therefore necessary for the originator of domain scoped FS-LSPs to advertise an identifier which will allow an IS who receives such an FS-LSP to determine whether the source of the FS-LSP is currently reachable. The identifier required depends on what "address-families" are being advertised.

When IS-IS is deployed in support of Layer 3 routing for IPv4 and/or IPv6 then FS-LSP #0 with domain-wide scope MUST include at least one of the following TLVs:

- IPv4 Traffic Engineering Router ID (TLV 134)
- IPv6 Traffic Engineering Router ID (TLV 140)

When IS-IS is deployed in support of Layer 2 routing, current standards (e.g. [RFC6325]) only support a single area. Therefore domain-wide scope is not yet applicable. When the Layer 2 standards are updated to include multi-area support the identifiers which can be used to support inter-area reachability will be defined - at which point the use of domain-wide scope for Layer 2 can be fully defined.

10. Announcing Support for Flooding Scopes

Announcements of support for flooding scope may be useful in validating that full support has been deployed and/or in isolating the reasons for incomplete flooding of FS-LSPs for a given scope.

ISs supporting FS-PDUs MAY announce supported scopes in IIH PDUs. To do so a new TLV is defined.
ScopedFloodingSupport
Type: 243 (suggested - to be assigned by IANA)
Length: 1 - 127
Value

<table>
<thead>
<tr>
<th>No of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
</tr>
<tr>
<td>:</td>
</tr>
<tr>
<td>R</td>
</tr>
</tbody>
</table>

A list of the circuit scopes supported on this circuit and other non-circuit flooding scopes supported.
R bit MUST be 0 and is ignored on receipt.

In a Point-Point IIH L1, L2 and domain-wide scopes MAY be advertised.
In Level 1 LAN IIHs L1 and domain-wide scopes MAY be advertised.
In Level 2 LAN IIHs L2 and domain-wide scopes MAY be advertised.

Information in this TLV MUST NOT be considered in adjacency formation.

Whether information in this TLV is used to determine when FS-LSPs associated with a locally supported scope are flooded is an implementation choice.

11. IANA Considerations

This document requires the definition of three new PDU types that need to be reflected in the ISIS PDU registry. Values below are suggested values subject to assignment by IANA.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>FS-LSP</td>
</tr>
<tr>
<td>11</td>
<td>FS-CSNP</td>
</tr>
<tr>
<td>12</td>
<td>FS-PSNP</td>
</tr>
</tbody>
</table>

This document requires that a new IANA registry be created to control the assignment of scope identifiers in FS-PDUs. The registration procedure is "Expert Review" as defined in [RFC5226]. Suggested registry name is "LSP Flooding Scoped Identifier Registry". A scope identifier is a number from 1-127 inclusive. The following scope
identifiers are defined by this document. Values are suggested values subject to assignment by IANA.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>FS LSP ID Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Level 1 Circuit Flooding Scope</td>
<td>Extended</td>
</tr>
<tr>
<td>2</td>
<td>Level 2 Circuit Flooding Scope</td>
<td>Extended</td>
</tr>
<tr>
<td>3</td>
<td>Level 1 Flooding Scope</td>
<td>Extended</td>
</tr>
<tr>
<td>4</td>
<td>Level 2 Flooding Scope</td>
<td>Extended</td>
</tr>
<tr>
<td>5</td>
<td>Domain-wide Flooding Scope</td>
<td>Extended</td>
</tr>
</tbody>
</table>

This document requires the definition of a new IS-IS TLV to be reflected in the "IS-IS TLV Codepoints" registry:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>IIH LSP SNP Purge</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
<td>Circuit Scoped Flooding Support</td>
<td>Y N N N</td>
</tr>
</tbody>
</table>

12. Security Considerations

Security concerns for IS-IS are addressed in [IS-IS], [RFC5304], and [RFC5310].

The new PDUs introduced are subject to the same security issues associated with their standard LSP/CSNP/PSNP counterparts. To the extent that additional PDUs represent additional load for routers in the network this increases the opportunity for denial of service attacks.

13. Acknowledgements

The authors wish to thank Ayan Banerjee, Donald Eastlake, and Mike Shand for their comments.

14. References

14.1. Normative References

14.2. Informational References

Authors’ Addresses

Les Ginsberg
Cisco Systems
510 McCarthy Blvd.
Milpitas, CA 95035
USA

Email: ginsberg@cisco.com

Stefano Previdi
Cisco Systems
Via Del Serafico 200
Rome 0144
Italy

Email: sprevidi@cisco.com

Yi Yang
Cisco Systems
7100-9 Kit Creek Road
Research Triangle Park, North Carolina 27709-4987
USA

Email: yiya@cisco.com
Abstract

This document defines support for the operation of IS-IS over Unidirectional Links without the use of tunnels or encapsulation of IS-IS Protocol Data Units. Adjacency establishment when the return path from the router at the receive end of a unidirectional link to the router at the transmit end of the unidirectional link is via another unidirectional link is supported. The extensions defined here are backwards compatible - only the routers directly connected to a unidirectional link need to be upgraded.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 19, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the

Table of Contents

1. Introduction .. 4
2. Encoding Extensions 4
 2.1. UDL LSPs and the UDL-TLV 4
 2.2. UDL Intermediate System Neighbors sub-TLV 5
 2.2.1. UDL Point-to-Point Intermediate System Neighbor
 Sub-TLV ... 5
 2.2.2. UDL LAN Intermediate System Neighbor Sub-TLV 6
 2.3. UDL LSP Entry sub-TLV 6
 2.4. UDL Manual Area Addresses sub-TLV 7
3. Adjacency Establishment 8
 3.1. Adjacency Establishment in Point-to-Point Mode 8
 3.2. Adjacency Establishment in Broadcast Mode 9
 3.3. UDL link metric configuration 9
4. Adjacency Maintenance 10
 4.1. Adjacency Maintenance by IS-T 10
 4.2. Adjacency Maintenance by IS-R 11
 4.3. Use of BFD .. 11
5. Operation of the Update Process on a UDL 11
6. Support for UDL on the Return Path 12
7. IANA Considerations 13
8. Security Considerations 14
9. Acknowledgements 14
10. References .. 14
 10.1. Normative References 14
 10.2. Informational References 15
Authors’ Addresses 15
1. Introduction

Operation of IS-IS depends upon two-way connectivity. Adjacencies are formed by exchanging hellos on a link, flooding of the link state database is made reliable by exchanges between neighbors on a link, etc. However, there are deployments where operation of the protocol is desired over links which are unidirectional i.e., one end of the link can only send Protocol Data Units (PDUs) and one end of the link can only receive PDUs. Traditional methods of supporting Unidirectional Links (UDLs) have involved establishing a tunnel from the Intermediate System (IS) at the receive end of the UDL to the IS at the transmit end of the UDL, encapsulating/decapsulating the IS-IS PDUs as they enter/exit the tunnel, and associating the PDUs received via the tunnel with the UDL at the transmit end. This typically requires static configuration and may introduce Maximum Transmission Unit (MTU) issues due to the required encapsulation.

This specification defines extensions to the protocol which support correct and reliable operation of IS-IS over UDLs without the need for tunnels or any form of encapsulation.

2. Encoding Extensions

Although the IS at the transmit end of a UDL link (IS-T) can send IS-IS PDUs normally on the link, the IS at the receive end of a UDL link (IS-R) requires assistance from other ISs in the network to pass the information it would normally send directly to IS-T. The Update Process as defined in [IS-IS] allows information generated by one IS in the network to be reliably flooded to all other ISs in the network using Link State PDUs (LSPs). The extensions defined here utilize LSPs to allow IS-R to send information normally sent in hellos (IIHs) or sequence number PDUs (SNPs) to IS-T in LSPs. As LSPs are flooded to all ISs in an area/sub-domain, care is taken to minimize the LSP churn necessary to support adjacency establishment and maintenance between IS-T and IS-R.

2.1. UDL LSPs and the UDL-TLV

Routers on the receive end of a UDL MUST reserve at least one LSP (for each level supported on the UDL) to advertise the UDL information described below. Such LSPs are referred to as UDL-LSPs although the only distinction between a UDL-LSP and other LSPs is in the TLV information which is present in such an LSP. LSP #0 MUST NOT be used to send UDL information. UDL-LSPs have the following special characteristics:
1. The only TLV which may be advertised in UDL-LSPs is the UDL TLV described below and (optionally) an Authentication TLV and/or Purge Originator Identification TLV [RFC6232]. This requirement is enforced by the originator of the UDL-LSP but is not checked by receiving systems i.e., other TLVs which are included in a UDL-LSP are processed normally. The reason for the restriction is to minimize the number of LSPs which have UDL information content.

2. Routers on the transmit side of a UDL flood UDL-LSPs regardless of the existence of an adjacency in the UP state on that circuit. Flooding of UDL-LSPs on circuits other than a UDL is as specified in [IS-IS] i.e., no special handling.

A new TLV is defined in which UDL specific information appears. All information in a UDL-TLV is encoded in sub-TLVs. UDL sub-TLVs are formatted as specified in [RFC5305]. The format of the UDL-TLV is therefore:

```
<table>
<thead>
<tr>
<th>No. of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (11)</td>
</tr>
<tr>
<td>(To be assigned by IANA)</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>Sub-TLVs</td>
</tr>
</tbody>
</table>
```

2.2. UDL Intermediate System Neighbors sub-TLV

UDL links may operate in Point-to-Point mode or in broadcast mode (assuming the subnetwork is a broadcast subnetwork). There are therefore two types of Intermediate System Neighbors sub-TLVs defined. A UDL-TLV MUST NOT contain more than one Intermediate System Neighbors sub-TLV. If multiple Intermediate System Neighbors sub-TLVs appear in a UDL-TLV all information in that UDL-TLV MUST be ignored.

2.2.1. UDL Point-to-Point Intermediate System Neighbor Sub-TLV

The UDL Point-to-Point Intermediate System Neighbor Sub-TLV describes an adjacency on a UDL which is operating in Point-to-Point mode i.e. either a Point-to-Point subnetwork or a LAN subnetwork operating in Point-to-Point mode as described in [RFC5309]. The information encoded follows the format for the Point-to-Point Three-Way Adjacency
TLV as defined in [RFC5303] but may also include the local LAN address when the underlying subnetwork is a LAN.

No. of octets

```
+---------------------------+          
| Type (240)               |     1         
| (To be assigned by IANA) |
+---------------------------+          
| Length (9 + ID Length)   |     1         
| to (15 + ID Length)      |
+---------------------------+          
| Adjacency 3-way state    |     1         |
+---------------------------+          
| Extended Local Circuit ID|     4         |
+---------------------------+          
| Neighbor System ID       |     ID Length |
+---------------------------+          
| Neighbor Extended Local Circuit ID | 4 |
+---------------------------+          
| Local LAN Address        |     6         |
+---------------------------+          
```

2.2.2. UDL LAN Intermediate System Neighbor Sub-TLV

The UDL LAN Intermediate System Neighbor sub-TLV describes an adjacency on a UDL operating in broadcast mode on a LAN subnetwork.

No. of octets

```
+---------------------------+          
| Type (6)                  |     1         
| (To be assigned by IANA) |
+---------------------------+          
| Length (7 + ID Length)    |     1         |
+---------------------------+          
| Neighbor LAN ID           |     ID Length + 1 |
+---------------------------+          
| Local LAN Address         |     6         |
+---------------------------+          
```

2.3. UDL LSP Entry sub-TLV

The content of this sub-TLV describes LSPs for which the originating router requires an update. A UDL Intermediate System Neighbor sub-TLV MUST be included in any UDL-TLV where the UDL LSP Entry sub-TLV is included. This is necessary so that only the specified neighbor
processes the LSP entries mentioned in the sub-TLV.

<table>
<thead>
<tr>
<th>No. of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (9)</td>
</tr>
<tr>
<td>(To be assigned by IANA)</td>
</tr>
<tr>
<td>Length (10 + ID Length)*N</td>
</tr>
<tr>
<td>: LSP Entries</td>
</tr>
</tbody>
</table>

Each LSP Entry has the following format:

<table>
<thead>
<tr>
<th>No. of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remaining Lifetime</td>
</tr>
<tr>
<td>LSP ID</td>
</tr>
<tr>
<td>LSP Sequence Number</td>
</tr>
<tr>
<td>Checksum</td>
</tr>
</tbody>
</table>

2.4. UDL Manual Area Addresses sub-TLV

This sub-TLV specifies the set of manualAreaAddresses of the originating system. No other sub-TLVs are allowed in a UDL-TLV which has this sub-TLV. Any other sub-TLVs in such a UDL-TLV are ignored on receipt.

<table>
<thead>
<tr>
<th>No. of octets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (1)</td>
</tr>
<tr>
<td>(To be assigned by IANA)</td>
</tr>
<tr>
<td>Length</td>
</tr>
<tr>
<td>: Area Address(es)</td>
</tr>
</tbody>
</table>

Each Area Address has the following format:

| Address Length |
| Area Address |
| Address Length |
3. Adjacency Establishment

An adjacency over a UDL link may be established over a link operating in Point-to-Point mode (including a LAN subnetwork configured to operate in Point-to-Point mode) or a link operating in broadcast mode. Operation in either mode is identical except for some differences in the manner of adjacency establishment as specified in the following sub-sections.

IS-T utilizes the set of manualAreaAddresses advertised by IS-R in a UDL Manual Area Address sub-TLV in combination with the UDL Intermediate System Neighbor sub-TLV(s) to IS-T advertised by IS-R to determine the level(s) associated with any adjacency to IS-R.

3.1. Adjacency Establishment in Point-to-Point Mode

Adjacency establishment makes use of Three Way Handshake as defined in [RFC5303] when operating in Point-to-Point mode. When operating over a LAN subnetwork, the use of point-to-point operation over LAN as defined in [RFC5309] is also used.

IS-T initiates adjacency establishment by sending Point-to-Point IIHs over the UDL as normal i.e., including Three-Way Handshake TLV. Note that the local circuit ID specified by IS-T need only be unique among the set of Point-to-Point UDL links supported by IS-T on which IS-T is at the transmit end.

Upon receipt of a Point-to-Point IIH IS-R creates an adjacency in the INIT state with IS-T and advertises the existence of the adjacency in its UDL-LSP(s) utilizing the UDL Point-to-Point Intermediate System Neighbor sub-TLV. The Local LAN address is included if the link is a LAN subnetwork operating in Point-to-Point mode. UDL-LSPs of the appropriate level(s) are generated according to the type of the adjacency with IS-T.

When IS-T receives the UDL-LSP(s) generated by IS-R containing the UDL Point-to-Point Intermediate System Neighbor sub-TLV it validates the 3 way information and, if valid, transitions its adjacency to UP state. In subsequent Point-to-Point IIHs IS-T includes IS-R’s circuit ID information as indicated in the UDL Point-to-Point IS Neighbor sub-TLV in its 3 way handshake TLV. A complete set of CSNPs is sent to IS-R and IS-T propagates its LSP Database to IS-R for the level(s) appropriate for the type of adjacency.

IS-R uses normal adjacency bring up rules based on the 3 way handshake information it receives in Point-to-Point IIHs from IS-T and advertises its IS neighbor to IS-T in the usual manner i.e. in an LSP other than a UDL-LSP.
3.2. Adjacency Establishment in Broadcast Mode

IS-T initiates adjacency establishment by sending LAN IIHs of the appropriate level(s) over the UDL as normal. IS-T specifies itself in the LAN ID field of the IIH, including a non-zero circuit ID. Note that the local circuit ID specified by IS-T need only be unique among the set of LAN UDL links supported by IS-T on which IS-T is at the transmit end. This is because pseudo-node LSPs will never be generated for a UDL. Operation in broadcast mode supports a UDL with a single IS-T and multiple IS-Rs.

Upon receipt of a LAN IIH PDU IS-R creates an adjacency in the INIT state with IS-T and advertises the existence of the adjacency in its UDL-LSP(s) utilizing the UDL LAN Intermediate System Neighbor sub-TLV. UDL-LSPs of the appropriate level(s) are generated according to the levels supported by IS-R and IS-T.

When IS-T receives the UDL-LSP(s) generated by IS-R containing the UDL LAN Intermediate System Neighbor sub-TLV(s) it validates the LANID and, if valid, transitions its adjacency to UP state. In subsequent LAN IIH PDUs, IS-T includes IS-R’s LAN Address as indicated in the UDL LAN IS Neighbor info. A complete set of CSNP for the appropriate level is sent over the circuit and IS-T also propagates its LSP Database for the appropriate level on the circuit.

IS-R uses normal adjacency bring up rules based on the IS Neighbor LAN Address information it receives in LAN IIH PDUs from IS-T and advertises its IS neighbor to IS-T in an LSP other than a UDL-LSP. Note that there is no pseudo-node on a UDL LAN circuit - therefore both IS-T and IS-R MUST advertise an IS Neighbor TLV to each other, not to a pseudo-node. This is identical to what is done on a Point-to-Point subnetwork.

3.3. UDL link metric configuration

What metrics are configured on a UDL depend upon the intended use of the UDL. If the UDL is to be used for unicast forwarding, then IS-T should be configured with the value appropriate to its intended preference in the network topology and IS-R should be configured with maximum link metric \(2^{24} - 1\) as defined in [RFC5305] (assuming wide metrics are in use). If the UDL is to be used for building a multicast Reverse Path Forwarding tree, then IS-R should be configured with the value appropriate to its intended preference in the network topology and IS-T should be configured with maximum link metric \(2^{24} - 1\). If the link is to be used for both unicast forwarding and multicast, then it is necessary to have two different metric configurations and perform two different SPF calculations. This may be achieved through the use of multi-topology extensions as...
4. Adjacency Maintenance

This section defines how adjacencies are maintained once established. Adjacency maintenance is defined without the need to send periodic UDL-LSP updates as this would be a significant burden on the entire network.

4.1. Adjacency Maintenance by IS-T

IS-T sends IIH PDUs as normal on a UDL. As IS-R does NOT send IIH PDUs to IS-T, IS-T maintains the adjacency to IS-R so long as all of the following conditions are TRUE:

- IS-T has a valid UDL-LSP from IS-R which includes Point-to-Point UDL IS Neighbor information or LAN UDL IS Neighbor information (as appropriate) regarding the adjacency IS-R has with IS-T on the UDL.
- IS-T can calculate a return path rooted at IS-R to IS-T which does not traverse the UDL on which the adjacency is associated.

When either of the above conditions becomes FALSE, IS-T brings down its adjacency to IS-R. Note that the return path calculation is only required when a topology change occurs in the network. It therefore need only be done in conjunction with a normal event driven SPF calculation.

NOTE: Immediately after the adjacency to IS-R has come up, if the only available return path traverses a UDL link on which the adjacency is still in the process of coming up, the return path check will fail. This is possible because we bypass normal flooding rules to allow the UDL-LSP to be flooded even when the adjacency is not UP on a UDL link (as described later in this document). If IS-T immediately brings the adjacency to IS-R down in this case, a circular dependency condition arises. To avoid this, if the return path check fails immediately after the adjacency comes up, a timer Tp is started. The timer is cancelled when a return path check succeeds. If the timer expires, IS-T brings down the adjacency to IS-R. A recommended value for the timer Tp is a small multiple (e.g., "twice") of the estimated time necessary to propagate LSPs across the entire domain.

Although it is unorthodox to bring up an adjacency without confirmed
two way connectivity, the extension is well grounded because the receipt of IS-R’s UDL-LSP by IS-T is indicative of the existence of a return path even though it cannot yet be confirmed by examination of the LSP database. This unconfirmed two way connectivity is a condition which we do not want to persist indefinitely - hence the use of timer \(T_p \).

4.2. Adjacency Maintenance by IS-R

IS-R maintains its adjacency with IS-T based on receipt of IIHs from IS-T as normal. So long as IS-T follows the rules for adjacency maintenance described in the previous section this is sufficient.

Further protection against pathological behavior on the part of IS-T (e.g., failure to perform the return path calculation after a topology change) MAY be implemented by IS-R. When IS-R receives a CSNP from IS-T which contains an SNP entry identifying an LSP which is not in IS-R’s Link State Database (LSDB) a timer \(T_f \) is started for each such LSP. This includes entries which are older than, newer than, or non-existent in IS-R’s LSDB. The timer \(T_f \) is cancelled if:

- The associated LSP is received by IS-R on any circuit by normal operation of the Update process or

- A subsequent set of CSNPs received from IS-T does not include the LSP entry.

If any timer \(T_f \) expires IS-R brings down the adjacency with IS-T.

In the absence of pathological behavior by IS-T the \(T_f \) extension is not required. Its use is therefore optional.

4.3. Use of BFD

A multi-hop BFD session [RFC5883] MAY be established between IS-T and IS-R. This can be used to provide fast failure detection. If used, this would also make the calculation by IS-T of a return path from IS-R to IS-T optional.

5. Operation of the Update Process on a UDL

For purposes of LSP propagation IS-T views the UDL as if it were a broadcast subnetwork where IS-T is the DIS. This is true regardless of the mode of operation of the circuit (point-to-point or broadcast). Therefore, IS-T propagates new LSPs on the UDL as they arrive but after sending an LSP on the UDL the SRM flag for that LSP is cleared i.e. no acknowledgement for the LSP is required or
expected. IS-T also sends periodic CSNPs on the UDL.

IS-R cannot propagate LSPs to IS-T on the UDL. IS-R also cannot acknowledge LSPs received from IS-T on the UDL. In this respect IS-R operates on the UDL in a manner identical to a non-DIS on a broadcast circuit. If an LSP entry in a CSNP received from IS-T identifies an LSP which is "newer than" an LSP in IS-R's LSDB, IS-R MAY request the LSP from IS-T by sending a UDL-LSP with an LSP entry as described above. Since IS-R's UDL-LSP(s) will be propagated throughout the network even though the information is only of use to IS-Ts, it is recommended that some small delay occur between the receipt of a CSNP from IS-T and the generation of a UDL-LSP with an updated LSP entry by IS-R so as to allow for the possible receipt of the LSP either from IS-T or on another link.

If the number of LSP entries to be requested exceeds the space available in the UDL TLV associated with the adjacency to IS-T, IS-R MUST NOT generate multiple UDL TLVs associated with the same adjacency. Instead it should maintain the state of SSN flags appropriately for the LSP entries that require updates and send additional LSP entries (if necessary) in a subsequent UDL-LSP after the previously requested updates arrive.

On receipt of a UDL-LSP generated by IS-R, IS-T checks the neighbor information in each UDL-TLV. If the information matches an existing adjacency that IS-T has with IS-R then IS-T sets SRM flag on the UDL for any LSPs in its LSDB which are "newer" than the corresponding entries IS-R sent in the UDL TLV. UDL-TLVs associated with adjacencies to routers other than IS-T are ignored by IS-T.

6. Support for UDL on the Return Path

If all return paths from IS-R to IS-T traverse a UDL, then in order to bring up the adjacency between IS-T and IS-R at least one of the adjacencies on a return path UDL must already be UP. This is required because IS-T relies on receiving the UDL-LSP(s) generated by IS-R in order to bring up its adjacency. In order to overcome a circular dependency in the case where multiple pairs of UDL neighbors are trying to bring up an adjacency at the same time, an extension to LSP propagation rules is required.

When a new UDL-LSP is received by any IS which has one or more active UDLs on which it is operating as an IS-T, the set of neighbors other than the local system which are advertised in UDL-TLVs in the received UDL-LSP is extracted - call this UDL-LSP-ISN-SET. A return path from the originating IS-R to each neighbor in the UDL-LSP-ISN-SET is calculated. If there is no return path to one or more
neighbors in this set periodic propagation of that UDL-LSP on all UDLs on which the local system acts as IS-T is initiated regardless of the state of an adjacency on that UDL. Periodic transmission of that UDL-LSP continues until a return path to all neighbors in the UDL-LSP-ISN-SET exists. This calculation is redone whenever the UDL-LSP is updated and when a topology change in the network occurs as a result of updates to the LSDB. Note that periodic retransmission is only done on UDLs on which the local system acts as IS-T.

If the network is partitioned the lack of a return path from a given IS-R to a given IS-T may persist. It is therefore recommended that the periodic retransmission employ an exponential backoff timer such that when the partition persists the periodic retransmission period is long enough so as to not represent a significant burden. It is recommended that the periodic retransmission be initially set to the locally configured CSNP interval. Note that periodic retransmission is only performed on UDL links and if an IS-R has previously received the same UDL-LSP it will silently ignore the retransmission since the UDL-LSP will already be in its LSDB. Unnecessary reflooding of the retransmitted UDL-LSP beyond the UDL does not occur.

IS-R MUST accept and propagate UDL-LSPs received on a UDL even when there is no adjacency in the UP state on the UDL circuit. Flooding of UDL-LSPs by IS-R uses normal flooding rules. LSPs received by IS-R on the UDL which do NOT include UDL TLVs are discarded unless the adjacency is UP (normal processing).

This extension allows establishment of an adjacency on a UDL even when the return path transits another UDL which is also in the process of bringing up an adjacency. The periodic nature of the flooding is meant to compensate for the unreliability of the flooding. After the adjacency is UP, IS-R can request LSPs from IS-T by putting LSP entries into UDL-LSPs - but that ability is not available until the adjacency is UP.

7. IANA Considerations

This document requires the definition of a new IS-IS TLV to be reflected in the "IS-IS TLV Codepoints" registry:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>IIH LSP SNP Purge</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Unidirectional Link Information</td>
<td>N Y N Y</td>
</tr>
</tbody>
</table>

This document requires that a new IANA registry be created to control the assignment of sub-TLV code points to be advertised within a Unidirectional Link Information TLV. The registration procedure is
"Expert Review" as defined in [RFC5226]. The following sub-TLVs are defined by this document. Values are suggested values subject to assignment by IANA.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual Area Addresses</td>
</tr>
<tr>
<td>6</td>
<td>LAN IS Neighbor</td>
</tr>
<tr>
<td>9</td>
<td>LSP Entry</td>
</tr>
<tr>
<td>240</td>
<td>Point-to-Point IS Neighbor</td>
</tr>
</tbody>
</table>

8. Security Considerations

Security concerns for IS-IS are addressed in [IS-IS], [RFC5304], and [RFC5310].

9. Acknowledgements

The idea of supporting IS-IS on UDLs without using tunnels or encapsulation was originally introduced in the US patent "Support of unidirectional link in IS-IS without IP encapsulation and in presence of unidirectional return path" (patent number: 7,957,380), by Sina Mirtorabi, Abhay Kumar Roy, Lester Ginsberg.

10. References

10.1. Normative References

October 2008.

10.2. Informational References

Authors’ Addresses

Les Ginsberg
Cisco Systems
510 McCarthy Blvd.
Milpitas, CA 95035
USA

Email: ginsberg@cisco.com

Sina Mirtorabi
Cisco Systems
3800 Zankar Road
San Jose, CA 95134
USA

Email: smirtora@cisco.com
Stefano Previdi
Cisco Systems
Via Del Serafico 200
Rome 0144
Italy

Email: sprevidi@cisco.com

Abhay Roy
Cisco Systems
560 McCarthy Blvd.
Milpitas, CA 95135
USA

Email: akr@cisco.com
IS-IS Traffic Engineering (TE) Metric Extensions

draft-previdi-isis-te-metric-extensions-02

Abstract

In certain networks, such as, but not limited to, financial information networks (e.g. stock market data providers), network performance criteria (e.g. latency) are becoming as critical to data path selection as other metrics.

This document describes extensions to IS-IS TE [RFC5305] such that network performance information can be distributed and collected in a scalable fashion. The information distributed using ISIS TE Metric Extensions can then be used to make path selection decisions based on network performance.

Note that this document only covers the mechanisms with which network performance information is distributed. The mechanisms for measuring network performance or acting on that information, once distributed, are outside the scope of this document.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 11, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 4
2. TE Metric Extensions to IS-IS 4
3. Interface and Neighbor Addresses 6
4. Sub TLV Details ... 6
 4.1. Unidirectional Link Delay Sub-TLV 6
 4.2. Unidirectional Delay Variation Sub-TLV 7
 4.3. Unidirectional Link Loss Sub-TLV 8
 4.4. Unidirectional Residual Bandwidth Sub-TLV 8
 4.5. Unidirectional Available Bandwidth Sub-TLV 9
5. Announcement Thresholds and Filters 10
6. Announcement Suppression 11
8. Compatibility ... 11
9. Security Considerations 11
10. IANA Considerations 11
11. Acknowledgements ... 11
12. References .. 12
 12.1. Normative References 12
 12.2. Informative References 12
Authors’ Addresses ... 13
1. Introduction

In certain networks, such as, but not limited to, financial information networks (e.g. stock market data providers), network performance information (e.g. latency) is becoming as critical to data path selection as other metrics.

In these networks, extremely large amounts of money rest on the ability to access market data in "real time" and to predictably make trades faster than the competition. Because of this, using metrics such as hop count or cost as routing metrics is becoming only tangentially important. Rather, it would be beneficial to be able to make path selection decisions based on performance data (such as latency) in a cost-effective and scalable way.

This document describes extensions to IS-IS Extended Reachability TLV defined in [RFC5305] (hereafter called "IS-IS TE Metric Extensions"), that can be used to distribute network performance information (such as link delay, delay variation, packet loss, residual bandwidth, and available bandwidth).

The data distributed by IS-IS TE Metric Extensions is meant to be used as part of the operation of the routing protocol (e.g. by replacing cost with latency or considering bandwidth as well as cost), by enhancing CSPF, or for other uses such as supplementing the data used by an Alto server [I-D.ietf-alto-protocol]. With respect to CSPF, the data distributed by IS-IS TE Metric Extensions can be used to setup, fail over, and fail back data paths using protocols such as RSVP-TE [RFC3209].

Note that the mechanisms described in this document only disseminate performance information. The methods for initially gathering that performance information, such as [RFC6375], or acting on it once it is distributed are outside the scope of this document.

2. TE Metric Extensions to IS-IS

This document proposes new IS-IS TE sub-TLVs that can be announced in ISIS Extended Reachability TLV (TLV-22) to distribute network performance information. The extensions in this document build on the ones provided in IS-IS TE [RFC5305] and GMPLS [RFC4203].

IS-IS Extended Reachability TLV 22 (defined in [RFC5305]), Inter-AS reachability information TLV 141 (defined in [RFC5316]) and MT-ISN TLV 222 (defined in [RFC5120]) have nested sub-TLVs which permit the TLVs to be readily extended. This document proposes several additional sub-TLVs:
<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBD1</td>
<td>Unidirectional Link Delay</td>
</tr>
<tr>
<td>TBD2</td>
<td>Unidirectional Delay Variation</td>
</tr>
<tr>
<td>TBD3</td>
<td>Unidirectional Packet Loss</td>
</tr>
<tr>
<td>TBD4</td>
<td>Unidirectional Residual Bandwidth Sub TLV</td>
</tr>
<tr>
<td>TBD5</td>
<td>Unidirectional Available Bandwidth Sub TLV</td>
</tr>
</tbody>
</table>

As can be seen in the list above, the sub-TLVs described in this document carry different types of network performance information. Many (but not all) of the sub-TLVs include a bit called the Anomalous (or "A") bit. When the A bit is clear (or when the sub-TLV does not include an A bit), the sub-TLV describes steady state link performance. This information could conceivably be used to construct a steady state performance topology for initial tunnel path computation, or to verify alternative failover paths.

When network performance violates configurable link-local thresholds a sub-TLV with the A bit set is advertised. These sub-TLVs could be used by the receiving node to determine whether to fail traffic to a backup path, or whether to calculate an entirely new path. From an MPLS perspective, the intent of the A bit is to permit LSP ingress nodes to:

A) Determine whether the link referenced in the sub-TLV affects any of the LSPs for which it is ingress. If there are, then:

B) Determine whether those LSPs still meet end-to-end performance objectives. If not, then:

C) The node could then conceivably move affected traffic to a pre-established protection LSP or establish a new LSP and place the traffic in it.

If link performance then improves beyond a configurable minimum value (reuse threshold), that sub-TLV can be re-advertised with the Anomalous bit cleared. In this case, a receiving node can conceivably do whatever re-optimization (or failback) it wishes to do (including nothing).

Note that when a sub-TLV does not include the A bit, that sub-TLV cannot be used for failover purposes. The A bit was intentionally omitted from some sub-TLVs to help mitigate oscillations. See Section 5 for more information.
Consistent with existing IS-IS TE specifications [RFC5305], the bandwidth advertisements defined in this draft MUST be encoded as IEEE floating point values. The delay and delay variation advertisements defined in this draft MUST be encoded as integer values. Delay values MUST be quantified in units of microseconds, packet loss MUST be quantified as a percentage of packets sent, and bandwidth MUST be sent as bytes per second. All values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time. See Section 5 for more information.

3. Interface and Neighbor Addresses

The use of TE Metric Extensions SubTLVs is not confined to the TE context. In other words, IS-IS TE Metric Extensions SubTLVs defined in this document can also be used for computing paths in the absence of a TE subsystem.

However, as for the TE case, Interface Address and Neighbor Address SubTLVs (IPv4 or IPv6) MUST be present. The encoding is defined in [RFC5305] for IPv4 and in [RFC6119] for IPv6.

4. Sub TLV Details

4.1. Unidirectional Link Delay Sub-TLV

This sub-TLV advertises the average link delay between two directly connected IS-IS neighbors. The delay advertised by this sub-TLV MUST be the delay from the local neighbor to the remote one (i.e. the forward path latency). The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type        |     Length    |A|  RESERVED   |    Delay      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       Delay                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

This sub-TLV has a type of TBD1.

The length is 4.

Where:

"A" represents the Anomalous (A) bit. The A bit is set when the
measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

The "Reserved" field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

"Delay Value" is a 24-bit field carries the average link delay over a configurable interval in micro-seconds, encoded as an integer value. When set to 0, it has not been measured. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value and may be larger.

4.2. Unidirectional Delay Variation Sub-TLV

This sub-TLV advertises the average link delay variation between two directly connected IS-IS neighbors. The delay variation advertised by this sub-TLV MUST be the delay from the local neighbor to the remote one (i.e. the forward path latency). The format of this sub-TLV is shown in the following diagram:

```
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-----------------------------------------------+
 |   Type        |     Length    |A|  RESERVED   |Delay Variation|
 +-----------------------------------------------+
 |                                               |
 +-----------------------------------------------+
 |                                               |
 +-----------------------------------------------+
```

This sub-TLV has a type of TBD2.
The length is 4.

Where:

"A" represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

The "Reserved" field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

"Delay Variation" is a 24-bit field carries the average link delay variation over a configurable interval in micro-seconds, encoded as an integer value. When set to 0, it has not been measured. When set to the maximum value 16,777,215 (16.777215 sec), then the delay is at least that value and may be larger.
least that value and may be larger.

4.3. Unidirectional Link Loss Sub-TLV

This sub-TLV advertises the loss (as a packet percentage) between two directly connected IS-IS neighbors. The link loss advertised by this sub-TLV MUST be the packet loss from the local neighbor to the remote one (i.e. the forward path loss). The format of this sub-TLV is shown in the following diagram:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type        |     Length    |A|  RESERVED   |   Link Loss   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Link Loss            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Link Loss   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

This sub-TLV has a type of TBD3.

The length is 4.

Where:

The "A" bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

"Reserved" field is reserved for future use. It MUST be set to 0 when sent and MUST be ignored when received.

"Link Loss" is a 24-bit field carries link packet loss as a percentage of the total traffic sent over a configurable interval. The basic unit is 0.000003%, where \(2^{24} - 2\) is 50.331642%. This value is the highest packet loss percentage that can be expressed (the assumption being that precision is more important on high speed links than the ability to advertise loss rates greater than this, and that high speed links with over 50% loss are unusable). Therefore, measured values that are larger than the field maximum SHOULD be encoded as the maximum value. When set to a value of all 1s \(2^{24} - 1\), the link packet loss has not been measured.

4.4. Unidirectional Residual Bandwidth Sub-TLV

This TLV advertises the residual bandwidth between two directly connected IS-IS neighbors. The residual bandwidth advertised by this
sub-TLV MUST be the residual bandwidth from the system originating the sub-TLV to its neighbor. The format of this sub-TLV is shown in the following diagram:

```
0  1  2  3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     Type       |     Length    |A|  RESERVED   |   Residual    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Bandwidth                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

This sub-TLV has a type of TBD4.
The length is 5.

Where:

The "A" bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

"Residual Bandwidth" is the residual bandwidth in IEEE floating point format in units of bytes per second. The link may be a single link, forwarding adjacency [RFC4206], or bundled link. For a link or forwarding adjacency, residual bandwidth is defined to be Maximum Link Bandwidth [RFC5305] minus the bandwidth currently allocated to RSVP-TE LSPs. For a bundled link, residual bandwidth is defined to be the sum of the component link residual bandwidths.

Note that although it may seem possible to calculate Residual Bandwidth using the existing sub-TLVs in [RFC5305], this is not a consistently reliable approach and hence the Residual Bandwidth sub-TLV has been added here. For example, because the Maximum Reservable Bandwidth [RFC5305] can be larger than the capacity of the link, using it as part of an algorithm to determine the value of the Maximum Link Bandwidth [RFC5305]minus the bandwidth currently allocated to RSVP-TE Label Switched Paths cannot be considered reliably accurate.

4.5. Unidirectional Available Bandwidth Sub-TLV

This TLV advertises the available bandwidth between two directly connected IS-IS neighbors. The available bandwidth advertised in this sub-TLV MUST be the available bandwidth from the originating system to its neighbor. The format of this sub-TLV is shown in the following diagram:
This sub-TLV has a type of TBD5.
The length is 5.

Where:

The "A" bit represents the Anomalous (A) bit. The A bit is set when the measured value of this parameter exceeds its configured maximum threshold. The A bit is cleared when the measured value falls below its configured reuse threshold. If the A bit is clear, the sub-TLV represents steady state link performance.

"Available Bandwidth" is a field that carries the available bandwidth on a link, forwarding adjacency, or bundled link in IEEE floating point format with units of bytes per second. For a link or forwarding adjacency, available bandwidth is defined to be residual bandwidth (see Section 4.4) minus the measured bandwidth used for the actual forwarding of non-RSVP-TE Label Switched Paths packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths.

5. Announcement Thresholds and Filters

The values advertised in all sub-TLVs MUST be controlled using an exponential filter (i.e. a rolling average) with a configurable measurement interval and filter coefficient.

Implementations are expected to provide separately configurable advertisement thresholds. All thresholds MUST be configurable on a per sub-TLV basis.

The announcement of all sub-TLVs that do not include the A bit SHOULD be controlled by variation thresholds that govern when they are sent.

Sub-TLVs that include the A bit are governed by several thresholds. Firstly, a threshold SHOULD be implemented to govern the announcement of sub-TLVs that advertise a change in performance, but not an SLA violation (i.e. when the A bit is not set). Secondly, implementations MUST provide configurable thresholds that govern the
announcement of sub-TLVs with the A bit set (for the indication of a performance violation). Thirdly, implementations SHOULD provide reuse thresholds. These thresholds govern sub-TLV re-announcement with the A bit cleared to permit fail back.

6. Announcement Suppression

When link performance average values change, but fall under the threshold that would cause the announcement of a sub-TLV with the A bit set, implementations MAY suppress or throttle sub-TLV announcements. All suppression features and thresholds SHOULD be configurable.

7. Network Stability and Announcement Periodicity

To mitigate concerns about stability, all values (except residual bandwidth) MUST be calculated as rolling averages where the averaging period MUST be a configurable period of time, rather than instantaneous measurements.

Announcements MUST also be able to be throttled using configurable inter-update throttle timers. The minimum announcement periodicity is 1 announcement per second.

8. Compatibility

As per [RFC5305], unrecognized Sub-TLVs should be silently ignored.

9. Security Considerations

This document does not introduce security issues beyond those discussed in [RFC3630] and [RFC5329].

10. IANA Considerations

IANA maintains the registry for the sub-TLVs. IS-IS TE Metric Extensions will require one new type code per sub-TLV defined in this document.

11. Acknowledgements

The authors would like to recognize Ayman Soliman and Les Ginsberg.
for their contributions.

12. References

12.1. Normative References

12.2. Informative References

draft-ietf-alto-protocol-13 (work in progress),
September 2012.

Measurement Profile for MPLS-Based Transport Networks",
RFC 6375, September 2011.

Authors’ Addresses

Stefano Previdi (editor)
Cisco Systems, Inc.
Via Del Serafico 200
Rome 00191
IT

Email: sprevidi@cisco.com

Spencer Giacalone
Thomson Reuters
195 Broadway
New York, NY 10007
USA

Email: Spencer.giacalone@thomsonreuters.com

Dave Ward
Cisco Systems, Inc.
3700 Cisco Way
SAN JOSE, CA 95134
US

Email: wardd@cisco.com

John Drake
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
USA

Email: jdrake@juniper.net

Alia Atlas
Juniper Networks
1194 N. Mathilda Ave.
Sunnyvale, CA 94089
USA
Email: akatlas@juniper.net

Clarence Filsfils
Cisco Systems, Inc.
Brussels
Belgium
Email: cfilsfil@cisco.com