
RTC-Web E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track July 5, 2019
Expires: January 6, 2020

 Security Considerations for WebRTC
 draft-ietf-rtcweb-security-12

Abstract

 WebRTC is a protocol suite for use with real-time applications that
 can be deployed in browsers - "real time communication on the Web".
 This document defines the WebRTC threat model and analyzes the
 security threats of WebRTC in that model.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Rescorla Expires January 6, 2020 [Page 1]

Internet-Draft WebRTC Security July 2019

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. The Browser Threat Model 4
 3.1. Access to Local Resources 5
 3.2. Same-Origin Policy 5
 3.3. Bypassing SOP: CORS, WebSockets, and consent to
 communicate . 6
 4. Security for WebRTC Applications 7
 4.1. Access to Local Devices 7
 4.1.1. Threats from Screen Sharing 8
 4.1.2. Calling Scenarios and User Expectations 8
 4.1.2.1. Dedicated Calling Services 9
 4.1.2.2. Calling the Site You’re On 9
 4.1.3. Origin-Based Security 10
 4.1.4. Security Properties of the Calling Page 11
 4.2. Communications Consent Verification 12
 4.2.1. ICE . 13
 4.2.2. Masking . 13
 4.2.3. Backward Compatibility 14
 4.2.4. IP Location Privacy 15
 4.3. Communications Security 15
 4.3.1. Protecting Against Retrospective Compromise 16
 4.3.2. Protecting Against During-Call Attack 17
 4.3.2.1. Key Continuity 17
 4.3.2.2. Short Authentication Strings 18
 4.3.2.3. Third Party Identity 19
 4.3.2.4. Page Access to Media 19
 4.3.3. Malicious Peers 20
 4.4. Privacy Considerations 20
 4.4.1. Correlation of Anonymous Calls 21
 4.4.2. Browser Fingerprinting 21
 5. Security Considerations 21
 6. Acknowledgements . 21
 7. IANA Considerations . 21

Rescorla Expires January 6, 2020 [Page 2]

Internet-Draft WebRTC Security July 2019

 8. Changes Since -04 . 21
 9. References . 22
 9.1. Normative References 22
 9.2. Informative References 22
 Author’s Address . 25

1. Introduction

 The Real-Time Communications on the Web (RTCWEB) working group has
 standardized protocols for real-time communications between Web
 browsers, generally called "WebRTC" [I-D.ietf-rtcweb-overview]. The
 major use cases for WebRTC technology are real-time audio and/or
 video calls, Web conferencing, and direct data transfer. Unlike most
 conventional real-time systems, (e.g., SIP-based [RFC3261] soft
 phones) WebRTC communications are directly controlled by some Web
 server. A simple case is shown below.

 +----------------+
 | |
 | Web Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTP / \ HTTP
 or / \ or
 WebSockets / \ WebSockets
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 | Browser |<---------->| Browser |
 | | | |
 +-----------+ +-----------+
 Alice Bob

 Figure 1: A simple WebRTC system

 In the system shown in Figure 1, Alice and Bob both have WebRTC-
 enabled browsers and they visit some Web server which operates a
 calling service. Each of their browsers exposes standardized
 JavaScript calling APIs (implemented as browser built-ins) which are
 used by the Web server to set up a call between Alice and Bob. The
 Web server also serves as the signaling channel to transport control
 messages between the browsers. While this system is topologically
 similar to a conventional SIP-based system (with the Web server
 acting as the signaling service and browsers acting as softphones),

Rescorla Expires January 6, 2020 [Page 3]

Internet-Draft WebRTC Security July 2019

 control has moved to the central Web server; the browser simply
 provides API points that are used by the calling service. As with
 any Web application, the Web server can move logic between the server
 and JavaScript in the browser, but regardless of where the code is
 executing, it is ultimately under control of the server.

 It should be immediately apparent that this type of system poses new
 security challenges beyond those of a conventional VoIP system. In
 particular, it needs to contend with malicious calling services. For
 example, if the calling service can cause the browser to make a call
 at any time to any callee of its choice, then this facility can be
 used to bug a user’s computer without their knowledge, simply by
 placing a call to some recording service. More subtly, if the
 exposed APIs allow the server to instruct the browser to send
 arbitrary content, then they can be used to bypass firewalls or mount
 denial of service attacks. Any successful system will need to be
 resistant to this and other attacks.

 A companion document [I-D.ietf-rtcweb-security-arch] describes a
 security architecture intended to address the issues raised in this
 document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The Browser Threat Model

 The security requirements for WebRTC follow directly from the
 requirement that the browser’s job is to protect the user. Huang et
 al. [huang-w2sp] summarize the core browser security guarantee as:

 Users can safely visit arbitrary web sites and execute scripts
 provided by those sites.

 It is important to realize that this includes sites hosting arbitrary
 malicious scripts. The motivation for this requirement is simple: it
 is trivial for attackers to divert users to sites of their choice.
 For instance, an attacker can purchase display advertisements which
 direct the user (either automatically or via user clicking) to their
 site, at which point the browser will execute the attacker’s scripts.
 Thus, it is important that it be safe to view arbitrarily malicious
 pages. Of course, browsers inevitably have bugs which cause them to
 fall short of this goal, but any new WebRTC functionality must be

Rescorla Expires January 6, 2020 [Page 4]

Internet-Draft WebRTC Security July 2019

 designed with the intent to meet this standard. The remainder of
 this section provides more background on the existing Web security
 model.

 In this model, then, the browser acts as a Trusted Coomputing Base
 (TCB) both from the user’s perspective and to some extent from the
 server’s. While HTML and JavaScript (JS) provided by the server can
 cause the browser to execute a variety of actions, those scripts
 operate in a sandbox that isolates them both from the user’s computer
 and from each other, as detailed below.

 Conventionally, we refer to either web attackers, who are able to
 induce you to visit their sites but do not control the network, and
 network attackers, who are able to control your network. Network
 attackers correspond to the [RFC3552] "Internet Threat Model". Note
 that in some cases, a network attacker is also a web attacker, since
 transport protocols that do not provide integrity protection allow
 the network to inject traffic as if they were any communications
 peer. TLS, and HTTPS in particular, prevent against these attacks,
 but when analyzing HTTP connections, we must assume that traffic is
 going to the attacker.

3.1. Access to Local Resources

 While the browser has access to local resources such as keying
 material, files, the camera, and the microphone, it strictly limits
 or forbids web servers from accessing those same resources. For
 instance, while it is possible to produce an HTML form which will
 allow file upload, a script cannot do so without user consent and in
 fact cannot even suggest a specific file (e.g., /etc/passwd); the
 user must explicitly select the file and consent to its upload.
 [Note: in many cases browsers are explicitly designed to avoid
 dialogs with the semantics of "click here to bypass security checks",
 as extensive research [cranor-wolf] shows that users are prone to
 consent under such circumstances.]

 Similarly, while Flash programs (SWFs) [SWF] can access the camera
 and microphone, they explicitly require that the user consent to that
 access. In addition, some resources simply cannot be accessed from
 the browser at all. For instance, there is no real way to run
 specific executables directly from a script (though the user can of
 course be induced to download executable files and run them).

3.2. Same-Origin Policy

 Many other resources are accessible but isolated. For instance,
 while scripts are allowed to make HTTP requests via the
 XMLHttpRequest() API (see [XmlHttpRequest]) those requests are not

Rescorla Expires January 6, 2020 [Page 5]

Internet-Draft WebRTC Security July 2019

 allowed to be made to any server, but rather solely to the same
 ORIGIN from whence the script came [RFC6454] (although CORS [CORS]
 and WebSockets [RFC6455] provide an escape hatch from this
 restriction, as described below.) This SAME ORIGIN POLICY (SOP)
 prevents server A from mounting attacks on server B via the user’s
 browser, which protects both the user (e.g., from misuse of his
 credentials) and the server B (e.g., from DoS attack).

 More generally, SOP forces scripts from each site to run in their
 own, isolated, sandboxes. While there are techniques to allow them
 to interact, those interactions generally must be mutually consensual
 (by each site) and are limited to certain channels. For instance,
 multiple pages/browser panes from the same origin can read each
 other’s JS variables, but pages from the different origins--or even
 iframes from different origins on the same page--cannot.

3.3. Bypassing SOP: CORS, WebSockets, and consent to communicate

 While SOP serves an important security function, it also makes it
 inconvenient to write certain classes of applications. In
 particular, mash-ups, in which a script from origin A uses resources
 from origin B, can only be achieved via a certain amount of hackery.
 The W3C Cross-Origin Resource Sharing (CORS) spec [CORS] is a
 response to this demand. In CORS, when a script from origin A
 executes what would otherwise be a forbidden cross-origin request,
 the browser instead contacts the target server to determine whether
 it is willing to allow cross-origin requests from A. If it is so
 willing, the browser then allows the request. This consent
 verification process is designed to safely allow cross-origin
 requests.

 While CORS is designed to allow cross-origin HTTP requests,
 WebSockets [RFC6455] allows cross-origin establishment of transparent
 channels. Once a WebSockets connection has been established from a
 script to a site, the script can exchange any traffic it likes
 without being required to frame it as a series of HTTP request/
 response transactions. As with CORS, a WebSockets transaction starts
 with a consent verification stage to avoid allowing scripts to simply
 send arbitrary data to another origin.

 While consent verification is conceptually simple--just do a
 handshake before you start exchanging the real data--experience has
 shown that designing a correct consent verification system is
 difficult. In particular, Huang et al. [huang-w2sp] have shown
 vulnerabilities in the existing Java and Flash consent verification
 techniques and in a simplified version of the WebSockets handshake.
 In particular, it is important to be wary of CROSS-PROTOCOL attacks
 in which the attacking script generates traffic which is acceptable

Rescorla Expires January 6, 2020 [Page 6]

Internet-Draft WebRTC Security July 2019

 to some non-Web protocol state machine. In order to resist this form
 of attack, WebSockets incorporates a masking technique intended to
 randomize the bits on the wire, thus making it more difficult to
 generate traffic which resembles a given protocol.

4. Security for WebRTC Applications

4.1. Access to Local Devices

 As discussed in Section 1, allowing arbitrary sites to initiate calls
 violates the core Web security guarantee; without some access
 restrictions on local devices, any malicious site could simply bug a
 user. At minimum, then, it MUST NOT be possible for arbitrary sites
 to initiate calls to arbitrary locations without user consent. This
 immediately raises the question, however, of what should be the scope
 of user consent.

 In order for the user to make an intelligent decision about whether
 to allow a call (and hence his camera and microphone input to be
 routed somewhere), he must understand either who is requesting
 access, where the media is going, or both. As detailed below, there
 are two basic conceptual models:

 1. You are sending your media to entity A because you want to talk
 to Entity A (e.g., your mother).

 2. Entity A (e.g., a calling service) asks to access the user’s
 devices with the assurance that it will transfer the media to
 entity B (e.g., your mother)

 In either case, identity is at the heart of any consent decision.
 Moreover, the identity of the party the browser is connecting to is
 all that the browser can meaningfully enforce; if you are calling A,
 A can simply forward the media to C. Similarly, if you authorize A
 to place a call to B, A can call C instead. In either cases, all the
 browser is able to do is verify and check authorization for whoever
 is controlling where the media goes. The target of the media can of
 course advertise a security/privacy policy, but this is not something
 that the browser can enforce. Even so, there are a variety of
 different consent scenarios that motivate different technical consent
 mechanisms. We discuss these mechanisms in the sections below.

 It’s important to understand that consent to access local devices is
 largely orthogonal to consent to transmit various kinds of data over
 the network (see Section 4.2). Consent for device access is largely
 a matter of protecting the user’s privacy from malicious sites. By
 contrast, consent to send network traffic is about preventing the
 user’s browser from being used to attack its local network. Thus, we

Rescorla Expires January 6, 2020 [Page 7]

Internet-Draft WebRTC Security July 2019

 need to ensure communications consent even if the site is not able to
 access the camera and microphone at all (hence WebSockets’s consent
 mechanism) and similarly we need to be concerned with the site
 accessing the user’s camera and microphone even if the data is to be
 sent back to the site via conventional HTTP-based network mechanisms
 such as HTTP POST.

4.1.1. Threats from Screen Sharing

 In addition to camera and microphone access, there has been demand
 for screen and/or application sharing functionality. Unfortunately,
 the security implications of this functionality are much harder for
 users to intuitively analyze than for camera and microphone access.
 (See http://lists.w3.org/Archives/Public/public-
 webrtc/2013Mar/0024.html for a full analysis.)

 The most obvious threats are simply those of "oversharing". I.e.,
 the user may believe they are sharing a window when in fact they are
 sharing an application, or may forget they are sharing their whole
 screen, icons, notifications, and all. This is already an issue with
 existing screen sharing technologies and is made somewhat worse if a
 partially trusted site is responsible for asking for the resource to
 be shared rather than having the user propose it.

 A less obvious threat involves the impact of screen sharing on the
 Web security model. A key part of the Same-Origin Policy is that
 HTML or JS from site A can reference content from site B and cause
 the browser to load it, but (unless explicitly permitted) cannot see
 the result. However, if a web application from a site is screen
 sharing the browser, then this violates that invariant, with serious
 security consequences. For example, an attacker site might request
 screen sharing and then briefly open up a new Window to the user’s
 bank or webmail account, using screen sharing to read the resulting
 displayed content. A more sophisticated attack would be open up a
 source view window to a site and use the screen sharing result to
 view anti cross-site request forgery tokens.

 These threats suggest that screen/application sharing might need a
 higher level of user consent than access to the camera or microphone.

4.1.2. Calling Scenarios and User Expectations

 While a large number of possible calling scenarios are possible, the
 scenarios discussed in this section illustrate many of the
 difficulties of identifying the relevant scope of consent.

Rescorla Expires January 6, 2020 [Page 8]

Internet-Draft WebRTC Security July 2019

4.1.2.1. Dedicated Calling Services

 The first scenario we consider is a dedicated calling service. In
 this case, the user has a relationship with a calling site and
 repeatedly makes calls on it. It is likely that rather than having
 to give permission for each call that the user will want to give the
 calling service long-term access to the camera and microphone. This
 is a natural fit for a long-term consent mechanism (e.g., installing
 an app store "application" to indicate permission for the calling
 service.) A variant of the dedicated calling service is a gaming
 site (e.g., a poker site) which hosts a dedicated calling service to
 allow players to call each other.

 With any kind of service where the user may use the same service to
 talk to many different people, there is a question about whether the
 user can know who they are talking to. If I grant permission to
 calling service A to make calls on my behalf, then I am implicitly
 granting it permission to bug my computer whenever it wants. This
 suggests another consent model in which a site is authorized to make
 calls but only to certain target entities (identified via media-plane
 cryptographic mechanisms as described in Section 4.3.2 and especially
 Section 4.3.2.3.) Note that the question of consent here is related
 to but distinct from the question of peer identity: I might be
 willing to allow a calling site to in general initiate calls on my
 behalf but still have some calls via that site where I can be sure
 that the site is not listening in.

4.1.2.2. Calling the Site You’re On

 Another simple scenario is calling the site you’re actually visiting.
 The paradigmatic case here is the "click here to talk to a
 representative" windows that appear on many shopping sites. In this
 case, the user’s expectation is that they are calling the site
 they’re actually visiting. However, it is unlikely that they want to
 provide a general consent to such a site; just because I want some
 information on a car doesn’t mean that I want the car manufacturer to
 be able to activate my microphone whenever they please. Thus, this
 suggests the need for a second consent mechanism where I only grant
 consent for the duration of a given call. As described in
 Section 3.1, great care must be taken in the design of this interface
 to avoid the users just clicking through. Note also that the user
 interface chrome, which is the representation through which the user
 interacts with the user agent itself, must clearly display elements
 showing that the call is continuing in order to avoid attacks where
 the calling site just leaves it up indefinitely but shows a Web UI
 that implies otherwise.

Rescorla Expires January 6, 2020 [Page 9]

Internet-Draft WebRTC Security July 2019

4.1.3. Origin-Based Security

 Now that we have described the calling scenarios, we can start to
 reason about the security requirements.

 As discussed in Section 3.2, the basic unit of Web sandboxing is the
 origin, and so it is natural to scope consent to origin.
 Specifically, a script from origin A MUST only be allowed to initiate
 communications (and hence to access camera and microphone) if the
 user has specifically authorized access for that origin. It is of
 course technically possible to have coarser-scoped permissions, but
 because the Web model is scoped to origin, this creates a difficult
 mismatch.

 Arguably, origin is not fine-grained enough. Consider the situation
 where Alice visits a site and authorizes it to make a single call.
 If consent is expressed solely in terms of origin, then at any future
 visit to that site (including one induced via mash-up or ad network),
 the site can bug Alice’s computer, use the computer to place bogus
 calls, etc. While in principle Alice could grant and then revoke the
 privilege, in practice privileges accumulate; if we are concerned
 about this attack, something else is needed. There are a number of
 potential countermeasures to this sort of issue.

 Individual Consent

 Ask the user for permission for each call.

 Callee-oriented Consent

 Only allow calls to a given user.

 Cryptographic Consent

 Only allow calls to a given set of peer keying material or to a
 cryptographically established identity.

 Unfortunately, none of these approaches is satisfactory for all
 cases. As discussed above, individual consent puts the user’s
 approval in the UI flow for every call. Not only does this quickly
 become annoying but it can train the user to simply click "OK", at
 which point the consent becomes useless. Thus, while it may be
 necessary to have individual consent in some case, this is not a
 suitable solution for (for instance) the calling service case. Where

Rescorla Expires January 6, 2020 [Page 10]

Internet-Draft WebRTC Security July 2019

 necessary, in-flow user interfaces must be carefully designed to
 avoid the risk of the user blindly clicking through.

 The other two options are designed to restrict calls to a given
 target. Callee-oriented consent provided by the calling site would
 not work well because a malicious site can claim that the user is
 calling any user of his choice. One fix for this is to tie calls to
 a cryptographically-established identity. While not suitable for all
 cases, this approach may be useful for some. If we consider the case
 of advertising, it’s not particularly convenient to require the
 advertiser to instantiate an iframe on the hosting site just to get
 permission; a more convenient approach is to cryptographically tie
 the advertiser’s certificate to the communication directly. We’re
 still tying permissions to origin here, but to the media origin (and-
 or destination) rather than to the Web origin.
 [I-D.ietf-rtcweb-security-arch] describes mechanisms which facilitate
 this sort of consent.

 Another case where media-level cryptographic identity makes sense is
 when a user really does not trust the calling site. For instance, I
 might be worried that the calling service will attempt to bug my
 computer, but I also want to be able to conveniently call my friends.
 If consent is tied to particular communications endpoints, then my
 risk is limited. Naturally, it is somewhat challenging to design UI
 primitives which express this sort of policy. The problem becomes
 even more challenging in multi-user calling cases.

4.1.4. Security Properties of the Calling Page

 Origin-based security is intended to secure against web attackers.
 However, we must also consider the case of network attackers.
 Consider the case where I have granted permission to a calling
 service by an origin that has the HTTP scheme, e.g., http://calling-
 service.example.com. If I ever use my computer on an unsecured
 network (e.g., a hotspot or if my own home wireless network is
 insecure), and browse any HTTP site, then an attacker can bug my
 computer. The attack proceeds like this:

 1. I connect to http://anything.example.org/. Note that this site is
 unaffiliated with the calling service.

 2. The attacker modifies my HTTP connection to inject an IFRAME (or
 a redirect) to http://calling-service.example.com

 3. The attacker forges the response from http://calling-
 service.example.com/ to inject JS to initiate a call to himself.

Rescorla Expires January 6, 2020 [Page 11]

Internet-Draft WebRTC Security July 2019

 Note that this attack does not depend on the media being insecure.
 Because the call is to the attacker, it is also encrypted to him.
 Moreover, it need not be executed immediately; the attacker can
 "infect" the origin semi-permanently (e.g., with a web worker or a
 popped-up window that is hidden under the main window.) and thus be
 able to bug me long after I have left the infected network. This
 risk is created by allowing calls at all from a page fetched over
 HTTP.

 Even if calls are only possible from HTTPS [RFC2818] sites, if those
 sites include active content (e.g., JavaScript) from an untrusted
 site, that JavaScript is executed in the security context of the page
 [finer-grained]. This could lead to compromise of a call even if the
 parent page is safe. Note: this issue is not restricted to PAGES
 which contain untrusted content. If any page from a given origin
 ever loads JavaScript from an attacker, then it is possible for that
 attacker to infect the browser’s notion of that origin semi-
 permanently.

4.2. Communications Consent Verification

 As discussed in Section 3.3, allowing web applications unrestricted
 network access via the browser introduces the risk of using the
 browser as an attack platform against machines which would not
 otherwise be accessible to the malicious site, for instance because
 they are topologically restricted (e.g., behind a firewall or NAT).
 In order to prevent this form of attack as well as cross-protocol
 attacks it is important to require that the target of traffic
 explicitly consent to receiving the traffic in question. Until that
 consent has been verified for a given endpoint, traffic other than
 the consent handshake MUST NOT be sent to that endpoint.

 Note that consent verification is not sufficient to prevent overuse
 of network resources. Because WebRTC allows for a Web site to create
 data flows between two browser instances without user consent, it is
 possible for a malicious site to chew up a significant amount of a
 user’s bandwidth without incurring significant costs to himself by
 setting up such a channel to another user. However, as a practical
 matter there are a large number of Web sites which can act as data
 sources, so an attacker can at least use downlink bandwidth with
 existing Web APIs. However, this potential DoS vector reinforces the
 need for adequate congestion control for WebRTC protocols to ensure
 that they play fair with other demands on the user’s bandwidth.

Rescorla Expires January 6, 2020 [Page 12]

Internet-Draft WebRTC Security July 2019

4.2.1. ICE

 Verifying receiver consent requires some sort of explicit handshake,
 but conveniently we already need one in order to do NAT hole-
 punching. Interactive Connectivity Establishment (ICE) [RFC8445]
 includes a handshake designed to verify that the receiving element
 wishes to receive traffic from the sender. It is important to
 remember here that the site initiating ICE is presumed malicious; in
 order for the handshake to be secure the receiving element MUST
 demonstrate receipt/knowledge of some value not available to the site
 (thus preventing the site from forging responses). In order to
 achieve this objective with ICE, the STUN transaction IDs must be
 generated by the browser and MUST NOT be made available to the
 initiating script, even via a diagnostic interface. Verifying
 receiver consent also requires verifying the receiver wants to
 receive traffic from a particular sender, and at this time; for
 example a malicious site may simply attempt ICE to known servers that
 are using ICE for other sessions. ICE provides this verification as
 well, by using the STUN credentials as a form of per-session shared
 secret. Those credentials are known to the Web application, but
 would need to also be known and used by the STUN-receiving element to
 be useful.

 There also needs to be some mechanism for the browser to verify that
 the target of the traffic continues to wish to receive it. Because
 ICE keepalives are indications, they will not work here. [RFC7675]
 describes the mechanism for providing consent freshness.

4.2.2. Masking

 Once consent is verified, there still is some concern about
 misinterpretation attacks as described by Huang et al.[huang-w2sp].
 Where TCP is used the risk is substantial due to the potential
 presence of transparent proxies and therefore if TCP is to be used,
 then WebSockets style masking MUST be employed.

 Since DTLS (with the anti-chosen plaintext mechanisms required by TLS
 1.1) does not allow the attacker to generate predictable ciphertext,
 there is no need for masking of protocols running over DTLS (e.g.
 SCTP over DTLS, UDP over DTLS, etc.).

 Note that in principle an attacker could exert some control over SRTP
 packets by using a combination of the WebAudio API and extremely
 tight timing control. The primary risk here seems to be carriage of
 SRTP over TURN TCP. However, as SRTP packets have an extremely
 characteristic packet header it seems unlikely that any but the most
 aggressive intermediaries would be confused into thinking that
 another application layer protocol was in use.

Rescorla Expires January 6, 2020 [Page 13]

Internet-Draft WebRTC Security July 2019

4.2.3. Backward Compatibility

 A requirement to use ICE limits compatibility with legacy non-ICE
 clients. It seems unsafe to completely remove the requirement for
 some check. All proposed checks have the common feature that the
 browser sends some message to the candidate traffic recipient and
 refuses to send other traffic until that message has been replied to.
 The message/reply pair must be generated in such a way that an
 attacker who controls the Web application cannot forge them,
 generally by having the message contain some secret value that must
 be incorporated (e.g., echoed, hashed into, etc.). Non-ICE
 candidates for this role (in cases where the legacy endpoint has a
 public address) include:

 o STUN checks without using ICE (i.e., the non-RTC-web endpoint sets
 up a STUN responder.)

 o Use of RTCP as an implicit reachability check.

 In the RTCP approach, the WebRTC endpoint is allowed to send a
 limited number of RTP packets prior to receiving consent. This
 allows a short window of attack. In addition, some legacy endpoints
 do not support RTCP, so this is a much more expensive solution for
 such endpoints, for which it would likely be easier to implement ICE.
 For these two reasons, an RTCP-based approach does not seem to
 address the security issue satisfactorily.

 In the STUN approach, the WebRTC endpoint is able to verify that the
 recipient is running some kind of STUN endpoint but unless the STUN
 responder is integrated with the ICE username/password establishment
 system, the WebRTC endpoint cannot verify that the recipient consents
 to this particular call. This may be an issue if existing STUN
 servers are operated at addresses that are not able to handle
 bandwidth-based attacks. Thus, this approach does not seem
 satisfactory either.

 If the systems are tightly integrated (i.e., the STUN endpoint
 responds with responses authenticated with ICE credentials) then this
 issue does not exist. However, such a design is very close to an
 ICE-Lite implementation (indeed, arguably is one). An intermediate
 approach would be to have a STUN extension that indicated that one
 was responding to WebRTC checks but not computing integrity checks
 based on the ICE credentials. This would allow the use of standalone
 STUN servers without the risk of confusing them with legacy STUN
 servers. If a non-ICE legacy solution is needed, then this is
 probably the best choice.

Rescorla Expires January 6, 2020 [Page 14]

Internet-Draft WebRTC Security July 2019

 Once initial consent is verified, we also need to verify continuing
 consent, in order to avoid attacks where two people briefly share an
 IP (e.g., behind a NAT in an Internet cafe) and the attacker arranges
 for a large, unstoppable, traffic flow to the network and then
 leaves. The appropriate technologies here are fairly similar to
 those for initial consent, though are perhaps weaker since the
 threats are less severe.

4.2.4. IP Location Privacy

 Note that as soon as the callee sends their ICE candidates, the
 caller learns the callee’s IP addresses. The callee’s server
 reflexive address reveals a lot of information about the callee’s
 location. In order to avoid tracking, implementations may wish to
 suppress the start of ICE negotiation until the callee has answered.
 In addition, either side may wish to hide their location from the
 other side entirely by forcing all traffic through a TURN server.

 In ordinary operation, the site learns the browser’s IP address,
 though it may be hidden via mechanisms like Tor
 [http://www.torproject.org] or a VPN. However, because sites can
 cause the browser to provide IP addresses, this provides a mechanism
 for sites to learn about the user’s network environment even if the
 user is behind a VPN that masks their IP address. Implementations
 may wish to provide settings which suppress all non-VPN candidates if
 the user is on certain kinds of VPN, especially privacy-oriented
 systems such as Tor. See [I-D.ietf-rtcweb-ip-handling] for
 additional information.

4.3. Communications Security

 Finally, we consider a problem familiar from the SIP world:
 communications security. For obvious reasons, it MUST be possible
 for the communicating parties to establish a channel which is secure
 against both message recovery and message modification. (See
 [RFC5479] for more details.) This service must be provided for both
 data and voice/video. Ideally the same security mechanisms would be
 used for both types of content. Technology for providing this
 service (for instance, SRTP [RFC3711], DTLS [RFC6347] and DTLS-SRTP
 [RFC5763]) is well understood. However, we must examine this
 technology in the WebRTC context, where the threat model is somewhat
 different.

 In general, it is important to understand that unlike a conventional
 SIP proxy, the calling service (i.e., the Web server) controls not
 only the channel between the communicating endpoints but also the
 application running on the user’s browser. While in principle it is
 possible for the browser to cut the calling service out of the loop

Rescorla Expires January 6, 2020 [Page 15]

Internet-Draft WebRTC Security July 2019

 and directly present trusted information (and perhaps get consent),
 practice in modern browsers is to avoid this whenever possible. "In-
 flow" modal dialogs which require the user to consent to specific
 actions are particularly disfavored as human factors research
 indicates that unless they are made extremely invasive, users simply
 agree to them without actually consciously giving consent.
 [abarth-rtcweb]. Thus, nearly all the UI will necessarily be
 rendered by the browser but under control of the calling service.
 This likely includes the peer’s identity information, which, after
 all, is only meaningful in the context of some calling service.

 This limitation does not mean that preventing attack by the calling
 service is completely hopeless. However, we need to distinguish
 between two classes of attack:

 Retrospective compromise of calling service.

 The calling service is non-malicious during a call but
 subsequently is compromised and wishes to attack an older call
 (often called a "passive attack")

 During-call attack by calling service.

 The calling service is compromised during the call it wishes to
 attack (often called an "active attack").

 Providing security against the former type of attack is practical
 using the techniques discussed in Section 4.3.1. However, it is
 extremely difficult to prevent a trusted but malicious calling
 service from actively attacking a user’s calls, either by mounting a
 Man-in-the-Middle (MITM) attack or by diverting them entirely. (Note
 that this attack applies equally to a network attacker if
 communications to the calling service are not secured.) We discuss
 some potential approaches and why they are likely to be impractical
 in Section 4.3.2.

4.3.1. Protecting Against Retrospective Compromise

 In a retrospective attack, the calling service was uncompromised
 during the call, but that an attacker subsequently wants to recover
 the content of the call. We assume that the attacker has access to
 the protected media stream as well as having full control of the
 calling service.

 If the calling service has access to the traffic keying material (as
 in SDES [RFC4568]), then retrospective attack is trivial. This form

Rescorla Expires January 6, 2020 [Page 16]

Internet-Draft WebRTC Security July 2019

 of attack is particularly serious in the Web context because it is
 standard practice in Web services to run extensive logging and
 monitoring. Thus, it is highly likely that if the traffic key is
 part of any HTTP request it will be logged somewhere and thus subject
 to subsequent compromise. It is this consideration that makes an
 automatic, public key-based key exchange mechanism imperative for
 WebRTC (this is a good idea for any communications security system)
 and this mechanism SHOULD provide perfect forward secrecy (PFS). The
 signaling channel/calling service can be used to authenticate this
 mechanism.

 In addition, if end-to-end keying is in used, the system MUST NOT
 provide any APIs to extract either long-term keying material or to
 directly access any stored traffic keys. Otherwise, an attacker who
 subsequently compromised the calling service might be able to use
 those APIs to recover the traffic keys and thus compromise the
 traffic.

4.3.2. Protecting Against During-Call Attack

 Protecting against attacks during a call is a more difficult
 proposition. Even if the calling service cannot directly access
 keying material (as recommended in the previous section), it can
 simply mount a man-in-the-middle attack on the connection, telling
 Alice that she is calling Bob and Bob that he is calling Alice, while
 in fact the calling service is acting as a calling bridge and
 capturing all the traffic. Protecting against this form of attack
 requires positive authentication of the remote endpoint such as
 explicit out-of-band key verification (e.g., by a fingerprint) or a
 third-party identity service as described in
 [I-D.ietf-rtcweb-security-arch].

4.3.2.1. Key Continuity

 One natural approach is to use "key continuity". While a malicious
 calling service can present any identity it chooses to the user, it
 cannot produce a private key that maps to a given public key. Thus,
 it is possible for the browser to note a given user’s public key and
 generate an alarm whenever that user’s key changes. SSH [RFC4251]
 uses a similar technique. (Note that the need to avoid explicit user
 consent on every call precludes the browser requiring an immediate
 manual check of the peer’s key).

 Unfortunately, this sort of key continuity mechanism is far less
 useful in the WebRTC context. First, much of the virtue of WebRTC
 (and any Web application) is that it is not bound to particular piece
 of client software. Thus, it will be not only possible but routine
 for a user to use multiple browsers on different computers which will

Rescorla Expires January 6, 2020 [Page 17]

Internet-Draft WebRTC Security July 2019

 of course have different keying material (SACRED [RFC3760]
 notwithstanding.) Thus, users will frequently be alerted to key
 mismatches which are in fact completely legitimate, with the result
 that they are trained to simply click through them. As it is known
 that users routinely will click through far more dire warnings
 [cranor-wolf], it seems extremely unlikely that any key continuity
 mechanism will be effective rather than simply annoying.

 Moreover, it is trivial to bypass even this kind of mechanism.
 Recall that unlike the case of SSH, the browser never directly gets
 the peer’s identity from the user. Rather, it is provided by the
 calling service. Even enabling a mechanism of this type would
 require an API to allow the calling service to tell the browser "this
 is a call to user X". All the calling service needs to do to avoid
 triggering a key continuity warning is to tell the browser that "this
 is a call to user Y" where Y is confusable with X. Even if the user
 actually checks the other side’s name (which all available evidence
 indicates is unlikely), this would require (a) the browser to use the
 trusted UI to provide the name and (b) the user to not be fooled by
 similar appearing names.

4.3.2.2. Short Authentication Strings

 ZRTP [RFC6189] uses a "short authentication string" (SAS) which is
 derived from the key agreement protocol. This SAS is designed to be
 compared by the users (e.g., read aloud over the voice channel or
 transmitted via an out of band channel) and if confirmed by both
 sides precludes MITM attack. The intention is that the SAS is used
 once and then key continuity (though a different mechanism from that
 discussed above) is used thereafter.

 Unfortunately, the SAS does not offer a practical solution to the
 problem of a compromised calling service. "Voice conversion"
 systems, which modify voice from one speaker to make it sound like
 another, are an active area of research. These systems are already
 good enough to fool both automatic recognition systems
 [farus-conversion] and humans [kain-conversion] in many cases, and
 are of course likely to improve in future, especially in an
 environment where the user just wants to get on with the phone call.
 Thus, even if SAS is effective today, it is likely not to be so for
 much longer.

 Additionally, it is unclear that users will actually use an SAS. As
 discussed above, the browser UI constraints preclude requiring the
 SAS exchange prior to completing the call and so it must be
 voluntary; at most the browser will provide some UI indicator that
 the SAS has not yet been checked. However, it is well-known that

Rescorla Expires January 6, 2020 [Page 18]

Internet-Draft WebRTC Security July 2019

 when faced with optional security mechanisms, many users simply
 ignore them [whitten-johnny].

 Once users have checked the SAS once, key continuity is required to
 avoid them needing to check it on every call. However, this is
 problematic for reasons indicated in Section 4.3.2.1. In principle
 it is of course possible to render a different UI element to indicate
 that calls are using an unauthenticated set of keying material
 (recall that the attacker can just present a slightly different name
 so that the attack shows the same UI as a call to a new device or to
 someone you haven’t called before) but as a practical matter, users
 simply ignore such indicators even in the rather more dire case of
 mixed content warnings.

4.3.2.3. Third Party Identity

 The conventional approach to providing communications identity has of
 course been to have some third party identity system (e.g., PKI) to
 authenticate the endpoints. Such mechanisms have proven to be too
 cumbersome for use by typical users (and nearly too cumbersome for
 administrators). However, a new generation of Web-based identity
 providers (BrowserID, Federated Google Login, Facebook Connect, OAuth
 [RFC6749], OpenID [OpenID], WebFinger [RFC7033]), has recently been
 developed and use Web technologies to provide lightweight (from the
 user’s perspective) third-party authenticated transactions. It is
 possible to use systems of this type to authenticate WebRTC calls,
 linking them to existing user notions of identity (e.g., Facebook
 adjacencies). Specifically, the third-party identity system is used
 to bind the user’s identity to cryptographic keying material which is
 then used to authenticate the calling endpoints. Calls which are
 authenticated in this fashion are naturally resistant even to active
 MITM attack by the calling site.

 Note that there is one special case in which PKI-style certificates
 do provide a practical solution: calls from end-users to large sites.
 For instance, if you are making a call to Amazon.com, then Amazon can
 easily get a certificate to authenticate their media traffic, just as
 they get one to authenticate their Web traffic. This does not
 provide additional security value in cases in which the calling site
 and the media peer are one in the same, but might be useful in cases
 in which third parties (e.g., ad networks or retailers) arrange for
 calls but do not participate in them.

4.3.2.4. Page Access to Media

 Identifying the identity of the far media endpoint is a necessary but
 not sufficient condition for providing media security. In WebRTC,
 media flows are rendered into HTML5 MediaStreams which can be

Rescorla Expires January 6, 2020 [Page 19]

Internet-Draft WebRTC Security July 2019

 manipulated by the calling site. Obviously, if the site can modify
 or view the media, then the user is not getting the level of
 assurance they would expect from being able to authenticate their
 peer. In many cases, this is acceptable because the user values
 site-based special effects over complete security from the site.
 However, there are also cases where users wish to know that the site
 cannot interfere. In order to facilitate that, it will be necessary
 to provide features whereby the site can verifiably give up access to
 the media streams. This verification must be possible both from the
 local side and the remote side. I.e., users must be able to verify
 that the person called has engaged a secure media mode (see
 Section 4.3.3). In order to achieve this it will be necessary to
 cryptographically bind an indication of the local media access policy
 into the cryptographic authentication procedures detailed in the
 previous sections.

 It should be noted that the use of this secure media mode is left to
 the discretion of the site. When such a mode is engaged, the browser
 will need to provide indicia to the user that the associated media
 has been authenticated as coming from the identified user. This
 allows WebRTC services that wish to claim end-to-end security to do
 so in a way that can be easily verified by the user. This model
 requires that the remote party’s browser be included in the TCB, as
 described in Section 3.

4.3.3. Malicious Peers

 One class of attack that we do not generally try to prevent is
 malicious peers. For instance, no matter what confidentiality
 measures you employ the person you are talking to might record the
 call and publish it on the Internet. Similarly, we do not attempt to
 prevent them from using voice or video processing technology from
 hiding or changing their appearance. While technologies (DRM, etc.)
 do exist to attempt to address these issues, they are generally not
 compatible with open systems and WebRTC does not address them.

 Similarly, we make no attempt to prevent prank calling or other
 unwanted calls. In general, this is in the scope of the calling
 site, though because WebRTC does offer some forms of strong
 authentication, that may be useful as part of a defense against such
 attacks.

4.4. Privacy Considerations

Rescorla Expires January 6, 2020 [Page 20]

Internet-Draft WebRTC Security July 2019

4.4.1. Correlation of Anonymous Calls

 While persistent endpoint identifiers can be a useful security
 feature (see Section 4.3.2.1) they can also represent a privacy
 threat in settings where the user wishes to be anonymous. WebRTC
 provides a number of possible persistent identifiers such as DTLS
 certificates (if they are reused between connections) and RTCP CNAMES
 (if generated according to [RFC6222] rather than the privacy
 preserving mode of [RFC7022]). In order to prevent this type of
 correlation, browsers need to provide mechanisms to reset these
 identifiers (e.g., with the same lifetime as cookies). Moreover, the
 API should provide mechanisms to allow sites intended for anonymous
 calling to force the minting of fresh identifiers. In addition, IP
 addresses can be a source of call linkage
 [I-D.ietf-rtcweb-ip-handling].

4.4.2. Browser Fingerprinting

 Any new set of API features adds a risk of browser fingerprinting,
 and WebRTC is no exception. Specifically, sites can use the presence
 or absence of specific devices as a browser fingerprint. In general,
 the API needs to be balanced between functionality and the
 incremental fingerprint risk. See [Fingerprinting].

5. Security Considerations

 This entire document is about security.

6. Acknowledgements

 Bernard Aboba, Harald Alvestrand, Dan Druta, Cullen Jennings, Alan
 Johnston, Hadriel Kaplan (S 4.2.1), Matthew Kaufman, Martin Thomson,
 Magnus Westerlund.

7. IANA Considerations

 There are no IANA considerations.

8. Changes Since -04

 o Replaced RTCWEB and RTC-Web with WebRTC, except when referring to
 the IETF WG

 o Removed discussion of the IFRAMEd advertisement case, since we
 decided not to treat it specially.

 o Added a privacy section considerations section.

Rescorla Expires January 6, 2020 [Page 21]

Internet-Draft WebRTC Security July 2019

 o Significant edits to the SAS section to reflect Alan Johnston’s
 comments.

 o Added some discussion if IP location privacy and Tor.

 o Updated the "communications consent" section to reflrect draft-
 ietf.

 o Added a section about "malicious peers".

 o Added a section describing screen sharing threats.

 o Assorted editorial changes.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [abarth-rtcweb]
 Barth, A., "Prompting the user is security failure", RTC-
 Web Workshop, September 2010.

 [CORS] van Kesteren, A., "Cross-Origin Resource Sharing", January
 2014.

 [cranor-wolf]
 Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., and
 L. cranor, "Crying Wolf: An Empirical Study of SSL Warning
 Effectiveness", Proceedings of the 18th USENIX Security
 Symposium, 2009, August 2009.

 [farus-conversion]
 Farrus, M., Erro, D., and J. Hernando, "Speaker
 Recognition Robustness to Voice Conversion", January 2008.

Rescorla Expires January 6, 2020 [Page 22]

Internet-Draft WebRTC Security July 2019

 [finer-grained]
 Barth, A. and C. Jackson, "Beware of Finer-Grained
 Origins", W2SP, 2008, July 2008.

 [Fingerprinting]
 "Fingerprinting Guidance for Web Specification Authors
 (Draft)", November 2013.

 [huang-w2sp]
 Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit", W2SP,
 2011, May 2011.

 [I-D.ietf-rtcweb-ip-handling]
 Uberti, J., "WebRTC IP Address Handling Requirements",
 draft-ietf-rtcweb-ip-handling-12 (work in progress), July
 2019.

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", draft-ietf-rtcweb-overview-19
 (work in progress), November 2017.

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-
 rtcweb-security-arch-18 (work in progress), February 2019.

 [kain-conversion]
 Kain, A. and M. Macon, "Design and Evaluation of a Voice
 Conversion Algorithm based on Spectral Envelope Mapping
 and Residual Prediction", Proceedings of ICASSP, May
 2001, May 2001.

 [OpenID] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", November 2014.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

Rescorla Expires January 6, 2020 [Page 23]

Internet-Draft WebRTC Security July 2019

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC3760] Gustafson, D., Just, M., and M. Nystrom, "Securely
 Available Credentials (SACRED) - Credential Server
 Framework", RFC 3760, DOI 10.17487/RFC3760, April 2004,
 <https://www.rfc-editor.org/info/rfc3760>.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <https://www.rfc-editor.org/info/rfc4251>.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, DOI 10.17487/RFC4568, July 2006,
 <https://www.rfc-editor.org/info/rfc4568>.

 [RFC5479] Wing, D., Ed., Fries, S., Tschofenig, H., and F. Audet,
 "Requirements and Analysis of Media Security Management
 Protocols", RFC 5479, DOI 10.17487/RFC5479, April 2009,
 <https://www.rfc-editor.org/info/rfc5479>.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May
 2010, <https://www.rfc-editor.org/info/rfc5763>.

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",
 RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <https://www.rfc-editor.org/info/rfc6189>.

 [RFC6222] Begen, A., Perkins, C., and D. Wing, "Guidelines for
 Choosing RTP Control Protocol (RTCP) Canonical Names
 (CNAMEs)", RFC 6222, DOI 10.17487/RFC6222, April 2011,
 <https://www.rfc-editor.org/info/rfc6222>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Rescorla Expires January 6, 2020 [Page 24]

Internet-Draft WebRTC Security July 2019

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, DOI 10.17487/RFC6455, December 2011,
 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7022] Begen, A., Perkins, C., Wing, D., and E. Rescorla,
 "Guidelines for Choosing RTP Control Protocol (RTCP)
 Canonical Names (CNAMEs)", RFC 7022, DOI 10.17487/RFC7022,
 September 2013, <https://www.rfc-editor.org/info/rfc7022>.

 [RFC7033] Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
 "WebFinger", RFC 7033, DOI 10.17487/RFC7033, September
 2013, <https://www.rfc-editor.org/info/rfc7033>.

 [RFC7675] Perumal, M., Wing, D., Ravindranath, R., Reddy, T., and M.
 Thomson, "Session Traversal Utilities for NAT (STUN) Usage
 for Consent Freshness", RFC 7675, DOI 10.17487/RFC7675,
 October 2015, <https://www.rfc-editor.org/info/rfc7675>.

 [RFC8445] Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", RFC 8445,
 DOI 10.17487/RFC8445, July 2018,
 <https://www.rfc-editor.org/info/rfc8445>.

 [SWF] "SWF File Format Specification Version 19", April 2013.

 [whitten-johnny]
 Whitten, A. and J. Tygar, "Why Johnny Can’t Encrypt: A
 Usability Evaluation of PGP 5.0", Proceedings of the 8th
 USENIX Security Symposium, 1999, August 1999.

 [XmlHttpRequest]
 van Kesteren, A., "XMLHttpRequesti Level 2", January 2012.

Author’s Address

Rescorla Expires January 6, 2020 [Page 25]

Internet-Draft WebRTC Security July 2019

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

Rescorla Expires January 6, 2020 [Page 26]

