
RTCWEB M. Thomson
Internet-Draft Microsoft
Intended status: Standards Track February 18, 2013
Expires: August 22, 2013

 Data Channels for RTCWEB
 draft-thomson-rtcweb-data-00

Abstract

 RTCWEB have selected SCTP over DTLS over UDP with ICE for peer-to-
 peer data channels. There is some debate over the best way to
 negotiate channels. This proposal is a nose-to-tail description of
 an alternative to existing proposals.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 22, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Thomson Expires August 22, 2013 [Page 1]

Internet-Draft Web Data Channels February 2013

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Overview of Operation . 3
 3. (In)consistent Properties 5
 3.1. Negotiation . 5
 3.2. Dealing with Mismatched Properties 5
 4. Available Data Channel Properties 6
 5. SDP Format . 7
 6. Payload Protocol Identifiers 8
 7. IANA Considerations . 8
 8. Security Considerations . 8
 9. Acknowledgments . 9
 10. References . 9
 10.1. Normative References 9
 10.2. Informative References 9
 Author’s Address . 9

Thomson Expires August 22, 2013 [Page 2]

Internet-Draft Web Data Channels February 2013

1. Introduction

 RTCWEB [I-D.ietf-rtcweb-overview] has defined the use of the Stream
 Control Transmission Protocol (SCTP) [RFC4960] over Datagram
 Transport Layer Security (DTLS) [RFC6347] over UDP with Interactive
 Connectivity Establishment (ICE) [RFC5245] for peer-to-peer data
 channels.

 This document describes a proposal for how this protocol stack is
 used. The proposal attempts to reconcile the following basic
 requirements:

 o the ability to have data channels used interchangeably with
 websockets, after establishment

 o the ability to use as many SCTP features as possible

 Like other proposals, this proposal uses an API that is largely
 interchangeable with the WebSockets API [REF:TBD]. Of course, that
 alone is insufficient because the way that data channels are created
 is completely different to websockets [RFC6455]. Only the general
 usage of the API follows the WebSockets API, channel establishment
 requires a very different process.

 Furthermore, not every application will care for compatibility with
 the WebSockets API. For those applications, additional properties
 are exposed to enable valuable SCTP features.

 In these aspects, all data channel proposals are the same. The
 details differ. For example, this one doesn’t need an in-band
 protocol. It even avoids the need for negotiation, except where it
 is needed. If not for the fact that the WebSockets API designers -
 in their infinite wisdom - decided to distinguish text from binary,
 it wouldn’t even need to use a PPID to identify textual messages.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT
 RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
 described in BCP 14, RFC 2119 [RFC2119] and indicate requirement
 levels for compliant implementations.

2. Overview of Operation

 A data channel is a bidirectional communication medium between WebRTC
 peers.

Thomson Expires August 22, 2013 [Page 3]

Internet-Draft Web Data Channels February 2013

 Every data channel is bound to a specific SCTP stream number. The
 same SCTP stream identifier is used for both directions of the data
 channel. Though SCTP streams are unidirectional, and this concept
 doesn’t hold any particular meaning for SCTP, this simplification
 ensures that channels can be created with minimal overhead.

 Each data channel has a set of properties that governs how it sends
 messages. Unlike other SCTP APIs where properties like reliability
 settings are set on a per-message basis, this API places these
 properties on the data channel. This allows the API to behave
 exactly like the WebSockets API when sending messages. Details of
 the available data channel properties are included in Section 4.

 There are three ways that a data channel can be created. All three
 result in an object representing the data channel being provided to
 the application. Each differs in the manner of delivery and how
 properties are selected for the data channel.

 1. The application can request the creation of a new data channel
 directly. The browser selects appropriate properties for the
 channel, using any values provided by the application and
 providing defaults for others.

 This triggers a notification to the application that indicates
 that it needs to renegotiate the session.

 2. Offer/answer negotiation can trigger the creation of a new data
 channel. In this case, the session description provided in an
 offer or answer describes the properties of the channel.

 3. Messages can arrive on an SCTP stream that does not have a data
 channel allocated. If messages arrive on a stream, the browser
 provides default values for all stream properties.

 Channel creation can fail if there are an insufficient number of
 available SCTP streams. This is based on either a local
 unwillingness to receive more streams, or based on knowledge of the
 unwillingness of the peer to receive more streams.

 Creation can also fail if the application specifies a stream ID that
 is already in use. These should trigger the appropriate error
 mechanisms (exceptions or something).

 Channels are closed by sending a RE-CONFIG chunk that includes
 Incoming and Outgoing SSN Reset Request parameters, as defined in
 [RFC6525]. Closing a channel doesn’t permit the sending of a code
 and message as exposed in the WebSockets API, any values that are
 provided by the application are discarded.

Thomson Expires August 22, 2013 [Page 4]

Internet-Draft Web Data Channels February 2013

3. (In)consistent Properties

 The creation of the first data channel will require offer/answer
 negotiation. This is necessary to ensure that the SCTP association
 is created, including ICE, the DTLS handshake, plus any
 authentication that might be required.

 Once an SCTP association is live, data channels can be used to
 exchange messages immediately after they are created. The drawback
 is that messages arrive at the peer without any information about
 what properties the sender attaches to the corresponding data
 channel.

 How much property consistency matters to the application will depend
 on the application. If the application is performing SS7 signaling
 using M3UA [RFC4666], this is unlikely to matter, but some
 applications could rely on having consistent data channel properties.

3.1. Negotiation

 The safest (and slowest) way to establish new channels with
 consistent properties is to negotiate them. This is performed using
 an offer/answer exchange. The application is able to choose where
 and when this negotiation occurs. If there is an existing data
 channel, then this provides a low latency path for performing this
 negotiation.

 The negotiation includes a description for every SCTP stream that a
 peer is sending that includes all of the data channel properties (see
 Section 4), so that the receiver can create a data channel with the
 same properties. The browser creates a data channel with the
 described properties and provides that to the application. If the
 data channel description appears in an offer, the answer describes
 the data channel that is used on the same stream number.

 An offer or answer that includes a description for a data channel
 that already exists, then the properties of that data channel are not
 modified. An answer MUST include the properties of the existent data
 channel, not the channel that the offer describes.

3.2. Dealing with Mismatched Properties

 An application that chooses to send on data channels prior to
 negotiation will cause the receiving peer to create a data channel
 with a default configuration. Applications can handle this in a
 number of ways:

Thomson Expires August 22, 2013 [Page 5]

Internet-Draft Web Data Channels February 2013

 o The application on the receiving peer can create data channels in
 the same order as the sender to ensure consistent properties.
 This is possible because stream identifiers are assigned in the
 same way by both peers.

 o The application on the receiving peer might apply application-
 specific default values for all non-negotiated channels.

 o The application on the receiving peer might not care about having
 consistent data channel properties. Note that data channel
 properties only apply to the sending of messages.

 Note: It is possible to provide an application with information about
 the values that are in use by a peer. This would in most cases be
 possible after negotiation, though some properties are revealed when
 new messages arrive. Of course, this is a lot of effort after the
 application has already effectively declared that it doesn’t care.
 Given that the application could exchange this information using the
 data channel(s) it has convenient, adding new APIs seem of very low
 value.

 [[Irrelevant API Note: Adding a data channel triggers a notification
 to the application that it should renegotiate the session. Normally,
 the ’negotiation needed’ state is cleared when the negotiation
 commences (or completes?). If the application decides to send
 packets, then the damage is done and there is no point negotiating.
 That being the case, a data channel could removed from the set of
 unnegotiated things upon sending a packet. Negotiation from this
 point isn’t going to change anything.]]

4. Available Data Channel Properties

 The following properties are exposed to the application. All of
 these properties can be set during the creation of a data channel.
 Once the channel object is created, these properties are mutable,
 with the exception of "streamId".

 streamId The SCTP stream ID to use for the channel. If not provided
 by the application, the lowest valued stream ID that is not
 already in use by a data channel is selected. If the channel is
 created as a result of negotiation or packet arrival, the stream
 ID has already been chosen.

 binaryPPID The SCTP payload protocol identifier (PPID) that is used
 for binary messages. Textual messages are always sent using a
 PPID that indicates textual content, so this value only determines
 the PPID that is attached to binary messages. This field is a 32-

Thomson Expires August 22, 2013 [Page 6]

Internet-Draft Web Data Channels February 2013

 bit number.

 Unless otherwise specified, channels use the PPID for WebRTC
 binary data channels. Channels created in response to the receipt
 of a message use the PPID from the received message, unless the
 message uses the PPID for WebRTC textual data channels, which
 causes the binary PPID to be selected instead. Details on the
 newly defined PPIDs are included in Section 6.

 reliabilityTime The amount of time (in milliseconds) that the
 browser will attempt to retransmit messages for reliable delivery.
 Together with reliabilityRetransmissions, this enables unreliable
 or partially reliable transmission of data. The default value for
 this property is the largest number available (e.g.,
 Number.POSITIVE_INFINITY).

 reliabilityRetransmissions The numer of retransmissions that the
 browser will make for any packet reliable delivery. Together with
 reliabilityTime, this enables unreliable or partially reliable
 transmission of data. The default value for this property is the
 largest number available (e.g., Number.POSITIVE_INFINITY).

 label The label to assign to the data channel. A default value is
 selected by the receiving browser.

 protocol A protocol label that identifies the protocol used on the
 data channel. This property is undefined unless set by the
 application.

 binaryType The BinaryType defined in The WebSockets API determines
 whether binary data is provided to the application as Blob or
 ArrayBuffer objects. The default value is "blob". Note that
 changing this might not have an immediate effect if messages have
 started to arrive prior to the change.

 All these properties are specific to each message that is sent.
 Changes to mutable properties take effect for the next message that
 is sent on the channel.

 This isn’t a W3C WebRTC document, so specifics of the API aren’t
 really relevant, but it is imagined that these properties could be
 passed in a dictionary to the method that creates a new data channel
 and exposed as attributes on the data channel object.

5. SDP Format

 The properties described above appear in SDP. All properties are

Thomson Expires August 22, 2013 [Page 7]

Internet-Draft Web Data Channels February 2013

 declarative. Though the specifics of the syntax doesn’t matter much,
 the following example could indicate something that would work:

 m=application 12345 SCTP/DTLS 0 1 2 5
 c=IN IP6 ::1
 a=fmtp:0 binaryPPID=177;label=control
 a=fmtp:1 label=chat
 a=fmtp:2 label=characters;reliabilityTime=2000;protocol=lrudfb
 a=fmtp:5 label=bullets;reliabilityTime=5000

 [[Formal SDP grammar TBD]]

 This assumes that the SCTP port number (inside the DTLS
 encapsulation) is fixed, so that this doesn’t need to be indicated
 anywhere. I’m not sure whether asking IANA for a port allocation
 makes sense though.

6. Payload Protocol Identifiers

 Two SCTP payload protocol identifiers are defined for WebRTC data
 channels.

 The WebRTC textual data channel PPID (number TBD) is used for all
 messages that are identified as being textual. The payload of
 messages marked with this PPID MUST be UTF-8 encoded text.

 The WebRTC binary data channel PPID (number TBD) is used as the
 default PPID for new data channels.

7. IANA Considerations

 This document probably should register the PPIDs, but I don’t really
 have time to do that right now.

8. Security Considerations

 I thought about this, and I can’t think of any specific security
 considerations. I could blather on about willingness to accept
 streams and large volumes of data, but that’s pretty lame.

 I’m sure something will turn up eventually.

Thomson Expires August 22, 2013 [Page 8]

Internet-Draft Web Data Channels February 2013

9. Acknowledgments

 This document is a rush job. If it survives for any longer than a
 couple of weeks, no doubt this section will come in handy.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
 Transmission Protocol (SCTP) Stream Reconfiguration",
 RFC 6525, February 2012.

10.2. Informative References

 [I-D.ietf-rtcweb-overview]
 Alvestrand, H., "Overview: Real Time Protocols for Brower-
 based Applications", draft-ietf-rtcweb-overview-05 (work
 in progress), December 2012.

 [RFC4666] Morneault, K. and J. Pastor-Balbas, "Signaling System 7
 (SS7) Message Transfer Part 3 (MTP3) - User Adaptation
 Layer (M3UA)", RFC 4666, September 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
 RFC 6455, December 2011.

Thomson Expires August 22, 2013 [Page 9]

Internet-Draft Web Data Channels February 2013

Author’s Address

 Martin Thomson
 Microsoft
 3210 Porter Drive
 Palo Alto, CA 94304
 US

 Phone: +1 650-353-1925
 Email: martin.thomson@skype.net

Thomson Expires August 22, 2013 [Page 10]

