The U and G bits in IPv6 Interface Identifiers

draft-carpenter-6man-ug-01

Brian Carpenter
Sheng Jiang

IETF 86
March 2013
Background

- RFC 4291 assumes that the normal case is to transform a MAC address into an IID, preserving the IEEE u and g bits (inverting u).
  - For unicast, u could be 0 or 1, g should be 0 (but the algorithm does not check)

- Numerous other forms of IID invented, e.g.:
  - temporary addresses (RFC 4941)
  - CGAs and HBAs
  - stable privacy addresses
  - 4rd mapped addresses
Inconsistencies (1)

- In CGAs and HBAs, $u = g = 0$.
- In temporary addresses, $u = 0$ but $g$ is variable. stable-privacy-addresses proposes the same.
- 4rd proposes $u = g = 1$.
- Reserved Subnet Anycast Addresses have $u = 0, g = 1$.
- Under /127 prefixes, $u$ and $g$ are both variable.
- The idea that these bits have semantics derived from IEEE MAC addresses is clearly bogus.
Inconsistencies (2)

• In any case, there is evidence from the field that even in IEEE MAC addresses, duplicate addresses are widespread, so the u bit is untrustworthy.

• We can conclude that the state of the u and g bits conveys no meaning in an IID; they are “just bits”.

• Note: ILNP does have the constraint that its Node Identifiers must be unique within a given site, but as we have just shown, the state of the u bit does not in any way guarantee this.
The problem

- Whenever a new IID format is proposed, there is confusion caused by
  a) the implication in RFC 4291 that all IIDs are in Modified EUI-64 format
  b) the statement in RFC 4291 that

  The use of the universal/local bit in the Modified EUI-64 format identifier is to allow development of future technology that can take advantage of interface identifiers with universal scope.

- a) is false and b) is based on a false premise.
Residual usefulness of u and g bits

• If an IID is known or guessed to have been created according to RFC 4291, it could be transformed back into a MAC address. This can be helpful during fault diagnosis.

• If each method of IID creation specifies the values of u and g, and each new method is carefully designed, these bits reduce the chances of duplicate IIDs. (But DAD remains essential.)
Proposed updates to RFC 4291 (1)

• The EUI-64 to IID transformation defined in RFC 4291 MUST be used for all cases where an IID is derived from an IEEE address.

• Specifications of other forms of IID will either specify explicitly how the u and g bits are set, or will simply include them as part of a field within the IID.

• The u and g bits in an IID have no semantics. The whole IID should be viewed as opaque by third parties.
Proposed updates to RFC 4291(2)

• In the following statement, the reference to “Modified EUI-64” applies only to IIDS actually derived from an IEEE address:
  For all unicast addresses, except those that start with the binary value 000, Interface IDs are required to be 64 bits long and to be constructed in Modified EUI-64 format.

• This statement is deleted:
  The use of the universal/local bit in the Modified EUI-64 format identifier is to allow development of future technology that can take advantage of interface identifiers with universal scope.
Questions? Discussion?

• Does 6man want to adopt this draft?