Multi-Media Concepts and Relations

draft-burman-rtcweb-media-structure-00 Bo Burman

Background

- Intended as input to RTP Taxonomy
 - Same motivations
- > Built on a draft UML model of RTP Taxonomy and added more media concepts from CLUE and WebRTC to give overview and ease understanding
 - Focus on finding commonalities
- > This is an attempt to draw conclusions from that work

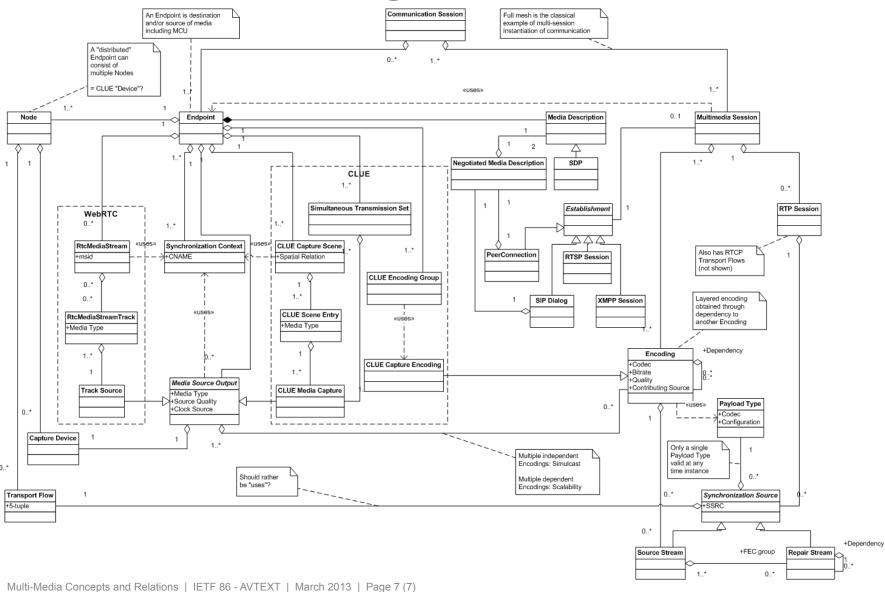
More Taxonomy Concepts 1

> Encoding

- Particular encoded representation of a Media Source Output
- Must fit established parameters such as RTP Payload Type, media bandwidth, other more or less codec-specific configurations (resolution, framerate, fidelity...)
- -Fundamental in simulcast and layered/scalable encoding
- -Probably maps well to CLUE Capture Encoding output
- -RTCWeb currently has no corresponding concept

More Taxonomy Concepts 2

- Synchronization Context
 - All Media Stream Output that share the same Synchronization
 Context have information allowing time synchronization on playout
 - Each Media Source Output is associated with one and only one Synchronization Context
 - -Re-use Synchronization Context when appropriate and possible
 - -RTP level Synchronization Context identifier, CNAME, is currently overloaded as an Endpoint identifier, which can cause issues
 - Same Endpoint could carry streams that do not have so strict timing relation that they share Synchronization Context


Identified WebRTC Issues

- Need Encoding to fully support simulcast and scalability
 - –Only a single Encoding for a particular Media Source Output per PeerConnection?
- Need unique but anonymous ID of Media Source Output
 - Due to re-use in multiple RtcMediaStreamTracks, in turn re-usable in multiple RtcMediaStreams, in turn re-usable in multiple PeerConnections, and possibility to relay RtcMediaStreamTracks
- MediaStream API handling of Synchronization Contexts
 - -Synchronization Context must be preserved when possible
 - New Synchronization Context must be created and resynchronization must occur when combining Media Source Output from different Synchronization Contexts

SDP Evolution

- > Likely applicable to both CLUE and WebRTC use of SDP
- > Requirements:
 - Encoding negotiation
 - Number of and boundary conditions for Media Source Output Encodings
 - -Media Resource Identification
 - Common Media Source Output ID across signaling contexts
 - > Which set of Encodings share same Media Source Output
 - Application level IDs referencing concepts defined in this draft
 - -Synchronization Source Parameters
 - Sets of different Synchronization Sources share same set of parameters
- > SDP likely not only option for all of the above
 - -Could for example use RTCP or other media signaling methods

Draft UML Diagram

