
What is JOSE

Jim Schaad
Co-chair JOSE
August Cellars

1Friday, March 15, 13

Overview
• Use JSON for data structure

representations
• Try and meet the goal of easy to

implement and use
• Allow for complex uses
• Allow for arbitrary body content

2Friday, March 15, 13

History
• Came out of the OpenID Forum
• Generalization of the JSON Web Token

3Friday, March 15, 13

Provided Services
• Signature
• Message Authentication Code
• Encryption
• Public Key Format
• Private Key Format

4Friday, March 15, 13

Signing
• Signature and MAC treated the same
• MAC only with pre-shared secret
• No canonicalization
• Multiple Serializations
– URL safe version
– JSON object serialization

5Friday, March 15, 13

Signing Structure
• Three sections
– Header
• JSON String
• Short member names for compatness

– Body
• Arbitrary Content
• Attached or Detached Content

– Signature Value

6Friday, March 15, 13

Signature Header
• Example Header
– {“alg”:”RS256”,

 “jku”:”http://keys.example.com/~jose/
SigningKeys”,
 “kid”:”Key#1”, “typ”:”JWS”
}

• Header Types
– Algorithm Information
– Keys/Key Locator Information
–Meta Data

7Friday, March 15, 13

http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys

Algorithm Headers
• Header members
– alg
• Signature Algorithm
• MAC algorithm
• String containing all information

8Friday, March 15, 13

Signature/MAC Algorithms
• Signature Algorithms
– RSA 1.5 with SHA-256, SHA-384,

SHA-512
– ECDS with SHA-256, SHA-384, SHA-512
– SHOULD – RSA and ECDS with SHA-256

• MAC Algorithms
– HMAC with SHA-256, SHA-384, SHA-512
–MUST – HMAC with SHA-256

• Plain Text Algorithms

9Friday, March 15, 13

Key Location Methods
• Header members
– jku – URL to JSON Web Keyset
– jwk – Embedded JSON Web Key
– x5u – URL to X.509 Certificate/Cert Chain
• PEM encoded

– x5t – SHA-1 thumbprint of X.509
Certificate

– x5c – embedded X.509 Certificate/Cert
Chain

– kid - key identifier

10Friday, March 15, 13

Meta Data
• Members
– typ – “JWS” – JSON Web Signature object
– crit – array of strings to identify must

handle members for extensions
– ctyp – Inner content identification

• Proposed Members
– aed – Application specific meta data

11Friday, March 15, 13

JSON Issues
• JSON String Delimitation with parser
– {“tag”:”value”}ABCD
– Not all parsers handle correctly

• JSON Allows multiple Members in a
lexical scope
– {“tag”:”value1”,”tag”:”value2”}
– SHOULD be unique

12Friday, March 15, 13

URL Safe Encoding
• Base64URL encoded Header
• Period character
• Base64URL encoded Body
• Period char
• Base64URL encoded Signature

• Hash the first three elements in the
encoding

13Friday, March 15, 13

URL Safe Example
eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1Ni
J9.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMD
A4MTkzODAsDQogImh0dHA6Ly9leGFtcG
xlLmNvbS9pc19yb290Ijp0cnVlfQ.dBjftJeZ
4CVP-
mB92K27uhbUJU1p1r_wW1gFWFOEjXk

Line wraps are absent in real world

14Friday, March 15, 13

JSON Based Encoding
• Members
– recipients – array of signature or MAC

headers in an object
• header – Base64URL encoded JSON header

string
• signature – Base64URL encoded signature

value
– payload – Base64URL encoded content

15Friday, March 15, 13

JSON Based Encoding
{"recipients":[
 {"header":"eyJhbGciOiJSUzI1NiJ9",

"signature":"cC4hiUPoj9Eetdgtv3hF80EGrhuB__dzERat0XF9
g2
 VtQgr9PJbu3XOiZj5RZ
mh7AAuHIm4Bh0Qc_lF5YKt_O8W2
 Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjb
KBYNX4BAynRFdiuB--
f_nZLgrnbyTyWzO75vRK5h6xBArLIARNPvkSjtQBMHlb1L07
Qe7K0Gar
ZRmB_eSN9383LcOLn6_dO--xi12jzDwusC-
eOkHWEsqtFZESc6BfI7n
oOPqvhJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98r

16Friday, March 15, 13

Open Issues
• Inclusion of RSA-PSS in the list of

algorithms

17Friday, March 15, 13

Encryption
• Multiple Serializations
– URL safe version
– JSON object serialization

18Friday, March 15, 13

Encryption Structure
• Five sections
– Header
• JSON String
• Short member names for compactness

– Encrypted Key
– Initialization Vector (IV)
– Body
• Arbitrary Content
• Attached or Detached Content

– Authentication Tag

19Friday, March 15, 13

Encryption Header
• Example Header
– {“alg”:”RSA1_5”,

 “enc”:”A128GCM”
 “jku”:”http://keys.example.com/~jose/
EncryptionKey”,
 “kid”:”Key#1”, “typ”:”JWE”
}

• Header Types
– Algorithm Information
– Keys/Key Locator Information
–Meta Data

20Friday, March 15, 13

http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys

Is it JWS or JWE
• If present use “typ” member
• Else if present use “alg” member
– Based on the algorithm, decide if it is JWS

or JWE
– If algorithm is not understood – then

exception
• Else if present use “enc” member
– JWE

21Friday, March 15, 13

Key Management Algorithms
• Member ‘alg’
• Key Transport
– RSA v1.5, RSA-OAEP

• Key Agreement
– ECDH-ES + KDF x {none, AES KeyWrap

128, 256}
• Key Encryption (symmetric)
– AES Key Wrap 128, 256

22Friday, March 15, 13

Content Encryption
• Requires the use of AEAD algorithms
• AES 128 GCM
• AES 256 GCM
• AES 128 CBC + HMAC SHA-256
• AES 256 CBC + HMAC SHA-512

23Friday, March 15, 13

Review where Algorithms Go
• Example Header
– {“alg”:”RSA1_5”,

 “enc”:”A128GCM”
 “jku”:”http://keys.example.com/~jose/
EncryptionKey”,
 “kid”:”Key#1”, “typ”:”JWE”
}

– alg – Key Management Algorithm
– enc – Content Encryption Algorithm

24Friday, March 15, 13

http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys
http://keys.example.com/~jose/SigningKeys

Zip and Key Derivation
• ‘zip’ – currently only support Deflate
• KDF parameters
– epk – ephemeral public key – embedded

JWK
– apu, apv, epu, epv – used for key

agreement algorithm key derivation
functions

25Friday, March 15, 13

URL Safe Encoding
• Base64URL encoded Header
• Period character
• Base64URL encoded Encrypted Key
• Period character
• Baes64URL encoded IV
• Period character
• Base64URL encrypted Body
• Period character
• Base64URL authentication tag

• Authenticated Data first 5 elements

26Friday, March 15, 13

JSON Based Encoding
• Members
– recipients – array of recipient information
• header – Base64URL encoded JSON header

string
• encrypted_key – base64URL encoded
• Integrity_value – base64URL encoded

– enitialization_vector – base64URL encoded
– ciphertext – base64URL encoded

27Friday, March 15, 13

JSON Keys
• Not doing certificates
• Keys can have attributes
• Allows for single keys and arrays of

keys
• Allow for private key fields

28Friday, March 15, 13

JSON Structure
• Members
– kty – key type
• RSA, ECDS, binary

– use - ‘sign’, ‘enc’
– alg – which algorithm to use
– kid – key identifier

29Friday, March 15, 13

Example
{"keys": [
 {"kty":"EC", "crv":"P-256",
 "x":“base64 value", "y":“base64
value",
 "use":"enc", "kid":"1"},
 {"kty":"RSA", "n": “base64 value",

 "e":"AQAB", "alg":"RS256",

 "kid":"2011-04-29"}
] }

30Friday, March 15, 13

Questions

31Friday, March 15, 13

