Overload Control Data
Analysis

(draft-campbelI-dime-overload-data-a nalysis-00)



Current Mechanism Proposals

 Diameter overload Control Application (DOCA)
— draft-korhonen-dime-ovl
— Uses a dedicated Diameter application for overload
reporting

e Mechanism for Diameter Overload Control
(MDOC)

— draft-roach-dime-overload-ctrl
— Piggybacks overload reporting on existing messages
— | made up the acronym ©



Draft Purpose

* The draft attempts to analyze differences in
the data models.

— Goal to evolve to a common data model

* Draft does not attempt a general comparison

— No conclusions here about relative merits



Fundamental Differences

* While the analysis focus on data elements,
there are some some mechanisms differences
that impact them

— Non-Adjacent Nodes
« MDOC as described is strictly hop-by-hop

 DOCA may allow non-adjacent OC communication at
some point, but doesn’t address it | current revision

— Scopes

 MDOC has richer (and therefore more complex) idea of
scopes



Fundamental Differences

— Stateless Mode
e DOCA allows stateful and stateless modes

— Nodes are not required to keep state, but may choose to do
so in implementation-specific ways.

— All parameters must be restated for each overload report
— (Updated version seems to remove stateful mode?)

« MDOC is always stateful.

— Soft State vs Hard State
« MDOC always treats overload information as soft state

* DOCA supports soft state, but treats overload as hard
state in some circumstances



Naming Conventions

Different naming styles

MDOC prefixes things with “OC-"

— e.g. OC-Scope

DOCA uses “Overload” prefix for root level
AVPs, and leaves grouped AVPs to context
— e.g. Overload-Info, Supported-Scopes

Not really important, but WG should pick a
style.



Negotiating Capabilities

Several data elements are used to negotiate
capabilities at connection establishment

These are in addition to the normal CCR/CCA
usage to negotiate application support.

When DOCA operates statelessly, negotiated
parameters are hints

MDOC holds negotiated values constant for
the life of a connection.



Supported Scope Selection

 DOCA: OC-Scope — Bitmap of scopes supported
by sender.

/(] )

— Defined values: “Host”, “Realm”, “Only Origin

Realm”,” Application Information”, “Node Utilization
Information”, and “Application Priorities”

— OC-Scope used both for declaration of supported
scopes, and listing scopes for a given overload report.

— DOCA overloads OC-Scope to include idicators that
load information and priority may be included



Supported Scope Selection

e MDOC: Supported-Scopes

— Defined Values: “Destination-Realm”,
“Application-ID”, “Destination-Host”, “Host”,
“Connection”, “Session”, and “Session-Group”

— Separate parameters for declaring supported
scopes, and listing scopes for an overload report.



Algorithm Selection

 DOCA: OC-Algorithm

— Currently defined values: Drop, Throttle, Prioritize

— Multiple values allowed. (What does it mean to
combine them?)

* MDOC: Overload-Algorithm
— Currently defined value: loss
— Single value allowed for the life of a connection.



Application Selection

* DOCA: OC-Applications: Indicates applications
of interest

e MDOC assumes overload reports apply to any
and all applications crossing a connection.

— Open Issue: Are there use cases for up front
negotiation of applications of interest?



Report Frequency

 DOCA: OC-Tocl: Requested frequency of
overload reports:

* MDOC: Piggy-backed on existing messages;
rate of overload reports varies with rate of

other messages.

— Open Issue: Need further discussion about rate of
overload reporting, regardless of the approach.



AVP Grouping

e DOCA: negotiation AVPs included at message
root.

e MDOC: Load-Info: Grouped AVP acts as a
container for other AVPs used in negotiation

— Artifact of DOCA using a dedicated application vs
MDOC piggybacking on existing messages.



Reporting Overload

* Several data elements are used for reporting
of current load and overload information.

* Overload and load information is generally
soft state for both mechanisms, but DOCA
treats overload as hard state in some
circumstances

* Since DOCA can operate statelessly,
negotiated parameters are repeated in each
overload report.



Report Scope

 DOCA: OC-Scope (same as for negotiation)

e MDOC: Load-Info-Scope — Octet stream with a
type and value. Multiple values allowed.

— DOCA does not include an explicit value, only a
type. The value is inferred from context or other
AVPs

e e.g. MDOC allows you to say “realm: example.com”,
while DOCA would say “realm: this realm”



Overload Severity

DOCA:

— OC-Level — Values 1-6 define discreet levels of increasing
severity, with explicit guidance for each level.

— OC-Sending-Rate: Indicates max sending rate for “throttle”
algorithm

MDOC: Overload-Metric — Abstract representation of

load. Interpretation is algorithm specific.

— for “loss” algorithm, a value of 1-100 to indicate requested
percent of traffic reduction.

Open Issue: abstract approach vs. fixed interpretation

of AVPs?



Report Algorithm

* DOCA: OC_Algorithm. Multiple values allowed

» MDOC: n/a — algorithm selected during
connection setup.

* Open Issues

— Do we need to change the algorithm mid-
connection?

— What does it mean to have multiple algorithm
values for the same report?



Report Expiration

 DOCA: Oc-Best-Before — Time of report
expiration

e MDOC: Period-of-Validity — Number of
seconds until report expiration

* Open Issue: Point in time vs time interval?



Current Load

 DOCA: OC-Utilization — Overall load (1-100)

* MDOC: Load — overall load (0-65535)

— MDOC load range chosen to fit with the SRV
weight field.

— Open Issue: Which range?



Covered Applications

* DOCA: OC-Application — indicates Diameter
applications of interest for a report
e MDOC: n/a

— MDOC can use the application scope type to
describe which applications a given report applies
to.



Priority

 DOCA: OC-Priority — sets relative priority of
applications listed in OC-Applications. May also
be used to set the priority of a given message.

* MDOC: n/a
— Relative priority between applications could be
achieved by assigning different overload values to
different application scopes
* Open Issue: Is OC-Priority just for the “Prioritize”
algorithm?



Session Groups

* DOCA: n/a

* MDOC: Session-Group — allows a node to
assign a session-group label to a session.

— The node can later send a single overload report
covering the entire group of sessions.

— Useful for an agent that distributes sessions

across servers, and one server fails or becomes
overloaded.



Result Codes

 DOCA defines the following new result codes:
— DIAMETER_NO _COMMON_SCOPE
— DIAMETER_NO_COMMON_ALGORITHMS
— DIAMETER_TOCL TOO BIG
— DIAMETER_TOCL TOO SMALL

— MDOC defines DIAMETER_PEER_IN_OVERLOAD

— MDOC has an MTI algorithms and MTI scopes, so
failures to negotiate either are protocol violations

— MDOC does not have the Tocl concept.

— Open Issue: Is DIAMETER_PEER_IN_OVERLOAD useful
for both?



Where do we go from here?

e Does it make sense to create a common data
model?

— Are we likely to have more than one OC transport
mechanism? |s one set of data elements likely to
make sense for both?

— Can we harmonize the different semantics?

 |fso..

— Should it be based on DOCA...
— ... MDOC ...
— ... or something else?



