Mechanism for Diameter
Overload Control (MDOC)

(draft-roach-dime-overload-ctrl)



Background

Draft originally written by Adam Roach

Adam presented it in detail in Atlanta

— No significant change

I’'m calling it MDOC just to have something to
call it :-)

Just covering some highlights today



Piggybacked Overload Reports

Overload Information piggybacked on other
Diameter applications

— Rate of overload reports varies with the rate of
normal messaging.

— Sends over DWR/DWA to handle quiescent
connections.

Supports overload reports in both directions for
bi-directional applications.

Reports both overload, and current load for non-
overloaded nodes

Application-ID independent.



Hop-by-Hop

MDOC communication is hop-by-hop

— If no agents exist, this works directly between
client and server

— If an agent exists, it consumes overload
information

* |f it can locally mitigate load, it does so. If so, client
never sees the overload report.

 |f it can’t mitigate load locally, it originates its own

overload report towards client.
— Aggregate overload of the agent and all upstream nodes.



Hop-by-Hop (cont)

* Currently does not comply to req 35
(traversing non-supporting intermediaries)

— We recognize this is an open issue
— Looking into ways to make this work

* Non-adjacent reporting is complicated
regardless of which mechanism is selected
— How is it negotiated?
— How to you avoid “over reporting” of overload?
— May require a separate specialized mechanism.



Rich Scope Model

* Fine control over what a given overload report
effects

— Host

— Connection

— Destination-Realm
— Destination-Host
— Application-ID

— Session

— Session-Group



Scopes (cont)

* Scopes can be combined for fine control

— e. g. Application-ID: X + Destination-Realm: Y +
Destination-Host: X

— Scopes are extensible. Basic scopes MTS



Session Groups

— Session-Group labeling aids in letting agents
report upstream overload

e e.g. An proxy distributes sessions among a set of
servers according to some local policy.

* The proxy adds a label to each session going to a
certain server

* |f that server becomes overloaded, the proxy sends a
single overload report that effects every session with
that label.



Extensible Algorithms

 One MTI algorithm defined (loss)

* Overload-Metric is abstract
— Unsigned 32 value
— Interpretation is up to algorithm

— For “loss” algorithm, Overload-Metric is the
requested percentage load reduction



