IEEE 802.1 FOR HOMENET

March 14, 2013
Authors
IEEE 802.1 Task Groups

- **Interworking (IWK, Stephen Haddock)**
 - Internetworking among 802 LANs, MANs and other wide area networks

- **Time Sensitive Networks (TSN, Michael David Johas Teener)**
 - Formerly called Audio Video Bridging (AVB) Task Group
 - Time-synchronized low latency streaming services through IEEE 802 networks

- **Data Center Bridging (DCB, Pat Thaler)**
 - Enhancements to existing 802.1 bridge specifications to satisfy the requirements of protocols and applications in the data center, e.g.

- **Security (Mick Seaman)**

- **Maintenance (Glenn Parsons)**
Basic Principles

- MAC addresses are “identifier” addresses, not “location” addresses
 - *This is a major Layer 2 value, not a defect!*
- Bridge forwarding is based on
 - Destination MAC
 - VLAN ID (VID)
- Frame filtering for only forwarding to proper outbound ports(s)
 - Frame is forwarded to every port (except for reception port) within the frame's VLAN if it is not known where to send it
 - Filter (unnecessary) ports if it is known where to send the frame (e.g. frame is only forwarded towards the destination)
- Quality of Service (QoS) is implemented after the forwarding decision based on
 - Priority
 - Drop Eligibility
 - Time
Data Plane Today

- **802.1Q today is 802.Q-2011** *(Revision 2013 is ongoing)*
 - Note that if the year is not given in the name of the standard, then it refers to the latest revision, e.g. today 802.1Q = 802.1Q-2011 and 802.1D = 802.1D-2004

- **802.1Q already involves**
 - Q-in-Q = Provider Bridges (PB) [IEEE 802.1ad-2005]
 - MAC-in-MAC = Provider Backbone Bridges (PBB) [IEEE 802.1ah-2008]

- **802.1Qbg-2012 Edge Virtual Bridging (EVB) is also part of today’s 802.1Q data plane** *(802.1Qbg not yet amended to 802.1Q)*

- **802.1Q is not only about 12-bit C-VLANs any more**
The Distributed Protocols for Control of the Active Topology

- RSTP: a single spanning tree shared by all traffic
- MSTP: different VLANs may share different spanning trees
- SPB: each node has its own Shortest Path Tree (SPT)

We are not limited to shared spanning trees any more

Note: the Spanning Tree Protocol (STP) is historical, it has been replaced by RSTP
Control Compatibility in Two Ways

• A bridge always prefers the company of bridges running the latest algorithm it knows: SPB over MSTP over RSTP over old STP.
 • A network of bridges running one algorithm appears as a single bridge to bridges running an older algorithm.
 • Basic spanning tree interconnects the clouds of like algorithms.
 • Thus, plug-and-play extends over bridges running different 802.1 algorithms.

• Bridges can be configured to confine any given algorithm to certain VLANs.
 • The same bridge or network can be configured to run any combination of MSTP, SPB, controller-supervised forwarding, or a variety of non-802 protocols simultaneously, each on different VLANs.
Multiple Registration Protocol (MRP)

- Flooding protocol (not unlike IS-IS or OSPF) that registers, on every bridge port, one’s neighbors’ ability to transmit and/or need to receive various kinds of data:
 - Multiple VLAN Registration Protocol (MVRP): Frames flooded to particular VLANs, e.g. broadcasts or unknown unicasts.
 - Multiple MAC Registration Protocol (MMRP): Multicast MAC addresses or {VLAN, MAC} pairs. *Not necessarily IP multicast.*
 - Multiple Stream Reservation Protocol (MSRP or SRP): Talkers wanting to send or Listeners wanting to receive data flows with bandwidth, latency, and congestion loss requirements.
- In some cases MRP is being supplanted by IS-IS.
Software Defined Networking Aspects

• Software Defined Networking (SDN) principles are supported by 802.1Q
• Separation of the control plane from the data plane
 • The bridge architecture separates the control plane from the data plane
 • The External Agent is geographically separated
• Separate topologies per VLAN
 • Any given VLAN can be assigned to MSTP, SPB, External Agent, or any other standard- or user-defined control methodology
• Centralized controller having a view of the network
 • The External Agent can be a centralized SDN Controller
 • The bridges may run the Link Layer Discovery Protocol (LLDP) [802.1AB] for retrieval by controller
 • The bridges can run IS-IS to distribute topology, whether any VLANs are assigned to control by SPB or not
• Programmability of the network
 • Well defined objects and functionality for programming the bridges
Shortest Path Bridging (SPB)

- SPB applies a link state control protocol to MAC Bridging
 - Based on the ISO Intermediate System to Intermediate System (IS-IS) intra-domain routing information exchange protocol \(\rightarrow\) ISIS-SPB
 - Leverages the automation features of link state, e.g. auto-discovery
 - Preserves the MAC Service model, e.g. delivery in-order

- ISIS-SPB operation
 - Link state data base \(\rightarrow\) Identical replica at each bridge
 - Topology information
 - Properties of the bridges
 - Service information
 - Computation instead of signaling or registration protocols
 - Leverage Moore’s law and technology trends

- ISIS-SPB specifications
 - IEEE 802.1aq specifies operation and backwards compatibility provisions
 - ISIS extensions for SPB (new TLVs) also documented in IETF RFC 6329
SPB Operation Modes

- A bridge only uses its own SPT for frame forwarding
 - Destination MAC + VID based forwarding allows two options to realize the SPTs

SPB has two operation modes

The implementation of the same principles to forwarding is different

SPBM: SPB MAC
- Backbone MAC identified SPTs
- Designed to leverage the scalability provided by PBB /“MAC-in-MAC”/
- No B-MAC flooding/learning
- Managed environments

SPBV: SPB VID
- VID identified SPTs
- Applicable to all types of VLANs
- Flooding and learning
- Plug&play
Load Spreading

• Using the shortest path automatically spreads traffic load to some extent

• Further load-spreading by exploiting equal cost paths to create multiple SPT Sets
 • Up to 16 standard tie-breaking variations to produce diverse SPTs

• Provisioned load spreading
 • A VLAN is assigned to an SPT Set
IS-IS in the home? Seriously?

- Consider a stack of devices near the TV set.
- They could be connected via wires and RJ-45 connectors, as well as Ether-over-Power and Wi-Fi.
IS-IS in the home? Seriously?

- Assume that the root of the spanning tree is at or to the left (in this diagram) from the Access Point.
- The cost from each box to the root is the same.
- Therefore, the 1 Gb/s wired links get blocked to prevent loops.
- This is why 802.1 is eschewing spanning tree for the home.
SPBV: Plug-and-play

- If adjacent bridges discover they are both running SPBV, they use that protocol in preference to any form of spanning tree.
- At the edges of the SPBV cloud, SPBV bridges connect to older implementations using spanning tree. There is complete forward and backward compatibility.
- SPBV bridges use IS-IS to assign each bridge a small integer bridge ID.
- As end stations (or configuration in bridges) request membership in VLANs, the bridge IDs are combined with the VLANs to build a 12-bit VLAN ID space that encodes both the source bridge ID and VLAN into.
Ongoing SPB Related Activities

• Deployments
 • Multiple vendors shipping product
 • Three interops so far: Alcatel-Lucent, Avaya, Huawei, Solana, Spirent
 • Next interop: May 6, 2013, http://www.interop.com

• Equal Cost Multiple Paths (ECMP) [802.1Qbp]
 • Per hop load balancing for unicast
 • Shared trees for multicast
 • Standardized Flow Hash → OAM enabler
 • New tag to carry Flow Hash and TTL

• Path Control and Reservation (PCR) [802.1Qca]
 • Beyond shortest path → Explicit path control
 • Leveraging link state for
 • Bandwidth and stream reservation
 • Redundancy (protection or restoration) for data flows
 • Distribution of control parameters for time synchronization and scheduling
Quality of Service in 802.1Q

• 8 priority code points in MAC hardware and/or VLAN tag.
• 1-8 queues per port, with default assignments to priorities.
• Default QoS is straight priority: 7, 6, 5, 4, 3, 2, 0 1.
• Bridges can be configured for “Enhanced Transmission Selection” that applies weights to queues, to ensure a minimum service level for lower priorities.
• A queue can be configured with a Credit Based Shaper, in which case it is drained ahead of any priority queue. A CPS queue is used only for data streams reserved by MSRP.
• (New work) Time-scheduled gates can be applied to queues to ensure certain priorities have < 1μS jitter.
• (New work) Low-priority packets can be preempted and resumed.
Priority-based Flow Control (PFC) [802.1Qbb]

- Prevents congestion drop for protocols designed for flow controlled networks (e.g. Fiber Channel over Ethernet)
 - Priorities are individually configured with PFC
 - Traffic in other priorities not affected
- Operates across a single hop
- PFC Pause Frame is sent to pause transmission for a time duration when receive buffer reaches high water mark. Sending with zero time value releases the pause.
- Just like the old 802.3X Pause, but operates on individual priority levels.
Stream Reservation

• The Stream Reservation Protocol (SRP):
 • Advertises streams in the whole network
 • Registers the path of streams
 • Calculates the “worst case latency”
 • Specifies the forwarding rules for AVB streams
 • Establishes an AVB domain
 • Reserves the bandwidth for AVB streams
 • An MRP Application

• Especially the bandwidth reservation is important in order to:
 • Protect the best effort traffic, as only 75% of the bandwidth can be reserved for SR class traffic
 • Protect the SR class traffic as it is not possible to use more bandwidth for SR class traffic than 75% (this is an important factor in order to guarantee a certain latency)
Stream Reservation Example

Talker Advertise

Listener

Bridge

AVB Stream
Traffic Shaping

- As audio/video streams require a high bandwidth utilization, it was necessary to set the maximum available bandwidth for this new traffic class quite high (75%)
- The Credit Based Shaper (CBS) spaces out the frames as much as possible in order to reduce bursting and bunching, thus
 - Protects the best effort traffic as the maximum interference (AVB stream burst) for the highest non-AVB priority is limited and known
 - Protects the AVB streams, as it limits the back to back AVB stream bursts which can interfere in a bridge
- The Credit Based Shaper in combination with the Stream Reservation Protocol is intended to provide delays under 250 us per bridge.
Credit Based Shaper Example

- Credit:
 - idleSlope
 - sendSlope

- Queue Depth:
 - three AVB packets are queued

- Transmitted Data:
 - interfering traffic
 - credit positive, AVB packet launched as soon as interfering traffic is finished
 - credit positive, 2nd AVB packet launched
 - credit positive, 3rd AVB packet launched
 - credit positive, 4th AVB packet launched

- Time:
 - credit negative, 2nd AVB packet held
Preemption and Time Scheduled Queuing

• The credit based shaper works well for audio/video applications, but is not suitable for control applications where worst case delays must be reduced to a minimum.

• Time-aware (scheduled) queuing combined with preemption reduces delays to near the best theoretical levels, with the minimum impact on non-scheduled traffic.

 • SRP or a management agent is required to provide an admission control scheme to limit low-latency traffic to the amount that can be supported by the links in the path between a talker and corresponding listener(s).
Link Aggregation [802.1AX-REV]

- Revision in progress
- Includes Distributed Resilient Network Interconnect (DRNI)
- No longer tied to 802.3 – works over any real or virtual medium
- Supports one, two or three systems at each end of the aggregation
- Connects two networks so that neither network is aware of the details of the interconnect
- Failures do not propagate from network to network
- Systems can be bridges, routers, end stations, or anything else
- Backwards compatible with existing Link Aggregation
- Allows systems to negotiate which data streams take which path, so that bi-directionally congruent flows are possible, and so that extensive state synchronization (e.g., of forwarding tables) is not necessary among systems
- Supports any means of identifying streams: VLANs, 5-tuples, etc.
Security

- Port-based Network Access Control [802.1X]
 - Defines encapsulation of Extensible Authentication Protocol (EAP) over IEEE 802 (EAP over LAN, or EAPOL).
 - Widely deployed on both wired and Wi-Fi networks
- MAC Security (MACsec) [802.1AE]
 - MACsec secures a link not a conversation
 - MACsec counters 802.1X man-in-the-middle attacks
- Secure Device Identity [802.1AR]
 - Supports trail of trust from manufacturer to user
 - Defines how a Secure Device Identifier may be cryptographically bound to a device to support device identity authentication.
Summary
REFERENCES
IEEE 802.1 Standards – Interworking

IEEE 802.1 Standards –
Time Sensitive Networks

• Note that 802.1Q-2011 incorporates TSN amendments
 - 802.1Qat-2010, “IEEE standard for local and metropolitan area networks: Virtual bridged local area networks – Amendment 14: Stream reservation protocol (SRP)"
IEEE 802.1 Standards – Data Center Bridging

- Note that 802.1Q-2011 incorporates 802.1Qau-2010, “IEEE standard for local and metropolitan area networks: Virtual bridged local area networks – Amendment 13: Congestion notification,”
IEEE 802.1 Standards – Security

Ongoing IEEE 802.1 Projects

- **Interworking**
 - **P802.1Qbp**, “Draft standard for local and metropolitan area networks: Media access control (MAC) bridges and virtual bridged local area networks – Amendment: *Equal cost multiple paths (ECMP)*,” http://www.ieee802.org/1/pages/802.1bp.html
 - **P802.1Qbz**, “Draft standard for local and metropolitan area networks: Media access control (MAC) bridges and virtual bridged local area networks – Amendment: *Enhancements to Bridging of 802.11*,” http://www.ieee802.org/1/pages/802.1bz.html
 - **P802.1Qca**, “Draft standard for local and metropolitan area networks: Media access control (MAC) bridges and virtual bridged local area networks – Amendment: *Path control and reservation*,” http://www.ieee802.org/1/pages/802.1ca.html

- **Time Sensitive Networks**

- **Security**

- Note that access to “802.1 private area” is free. Access control is for ongoing work and prepublication standards. Ask 802.1 people!
Further Reading

• **Book**

• **Papers**

• **Tutorial**

• **Wikipedia**
 - Time Sensitive Networks: http://en.wikipedia.org/wiki/Audio_Video_Bridging
<table>
<thead>
<tr>
<th>ACM</th>
<th>Association for Computing Machinery</th>
<th>E-TREE</th>
<th>Ethernet Tree (rooted multipoint) service</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVB</td>
<td>Audio Video Bridging</td>
<td>EVB</td>
<td>Edge Virtual Bridging</td>
</tr>
<tr>
<td>AP</td>
<td>Access Point</td>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td>BCB</td>
<td>Backbone Core Bridge</td>
<td>GM</td>
<td>Grand Master</td>
</tr>
<tr>
<td>BEB</td>
<td>Backbone Edge Bridge</td>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>B-MAC</td>
<td>Backbone MAC</td>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>BMCA</td>
<td>Best Master Clock Algorithm</td>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>B-VID</td>
<td>Backbone VLAN ID</td>
<td>IPS</td>
<td>Infrastructure Protection Switching</td>
</tr>
<tr>
<td>B-VLAN</td>
<td>Backbone VLAN</td>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>CCM</td>
<td>Continuity Check Message</td>
<td>I-SID</td>
<td>Backbone Service Instance Identifier</td>
</tr>
<tr>
<td>CBS</td>
<td>Credit Based Shaper</td>
<td>IS-IS</td>
<td>Intermediate System to Intermediate System</td>
</tr>
<tr>
<td>CM</td>
<td>Clock Master</td>
<td>ISIS-SPB</td>
<td>IS-IS for SPBV and SPBM</td>
</tr>
<tr>
<td>CS</td>
<td>Clock Slave</td>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>C-MAC</td>
<td>Customer MAC</td>
<td>I-tag</td>
<td>Backbone Service Instance TAG</td>
</tr>
<tr>
<td>C-TAG</td>
<td>Customer TAG</td>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>C-VID</td>
<td>Customer VLAN ID</td>
<td>ITU-T</td>
<td>ITU Telecommunication Standardization Sector</td>
</tr>
<tr>
<td>C-VLAN</td>
<td>Customer VLAN</td>
<td>IWK</td>
<td>Interworking</td>
</tr>
<tr>
<td>CFM</td>
<td>Connectivity Fault Management</td>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>DA</td>
<td>Destination Address</td>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>DCB</td>
<td>Data Center Bridging</td>
<td>LBM</td>
<td>Loopback Message</td>
</tr>
<tr>
<td>DCBX</td>
<td>Data Center Bridging eXchange</td>
<td>LBR</td>
<td>Loopback Reply</td>
</tr>
<tr>
<td>DCN</td>
<td>Data Center Network</td>
<td>LLDP</td>
<td>Link Layer Discovery Protocol</td>
</tr>
<tr>
<td>DRNI</td>
<td>Distributed Resilient Network Interconnect</td>
<td>LTM</td>
<td>Linktrace Message</td>
</tr>
<tr>
<td>EB</td>
<td>Edge Bridge</td>
<td>LTR</td>
<td>Linktrace Reply</td>
</tr>
<tr>
<td>ECMP</td>
<td>Equal Cost Multiple Paths</td>
<td>MAC-in-MAC</td>
<td>used for PBB</td>
</tr>
<tr>
<td>E-LINE</td>
<td>Ethernet Line (point-to-point) service</td>
<td>MAN</td>
<td>Metro Area Network</td>
</tr>
<tr>
<td>E-LAN</td>
<td>Ethernet LAN (multipoint) service</td>
<td>MEF</td>
<td>Metro Ethernet Forum</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>MEP</td>
<td>Maintenance association End Point</td>
<td>SPB</td>
<td>Shortest Path Bridging</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
<td>SPBM</td>
<td>Shortest Path Bridging MAC</td>
</tr>
<tr>
<td>MIP</td>
<td>Maintenance domain Intermediate Point</td>
<td>RDI</td>
<td>Remote Defect Indication</td>
</tr>
<tr>
<td>MoCA</td>
<td>Multimedia over Coax Alliance</td>
<td>RFC</td>
<td>Request For Comments</td>
</tr>
<tr>
<td>MKA</td>
<td>MAC Security Key Agreement Protocol</td>
<td>RSTP</td>
<td>Rapid Spanning Tree Protocol</td>
</tr>
<tr>
<td>MMRP</td>
<td>Multiple MAC registration Protocol</td>
<td>SDN</td>
<td>Software Defined Network</td>
</tr>
<tr>
<td>MRP</td>
<td>Multiple Registration Protocol</td>
<td>SONET</td>
<td>Synchronous Optical Networking</td>
</tr>
<tr>
<td>MSRP</td>
<td>Multiple Stream registration Protocol</td>
<td>SPBV</td>
<td>Shortest Path Bridging VID</td>
</tr>
<tr>
<td>MSTP</td>
<td>Multiple Spanning Tree Protocol</td>
<td>SPT</td>
<td>Shortest Path Tree</td>
</tr>
<tr>
<td>MVRP</td>
<td>Multiple VLAN Registration Protocol</td>
<td>SR</td>
<td>Stream Reservation</td>
</tr>
<tr>
<td>OAM</td>
<td>Operations, Administration and Maintenance</td>
<td>SRP</td>
<td>Stream Reservation Protocol</td>
</tr>
<tr>
<td>PAR</td>
<td>Project Authorization Request</td>
<td>S-tag</td>
<td>Service TAG</td>
</tr>
<tr>
<td>PB</td>
<td>Provider Bridge</td>
<td>S-VLAN</td>
<td>Service VLAN</td>
</tr>
<tr>
<td>PBB</td>
<td>Provider Backbone Bridge</td>
<td>S-TLV</td>
<td>Stream VLAN</td>
</tr>
<tr>
<td>PBB-TE</td>
<td>Provider Backbone Bridging - Traffic Engineering</td>
<td>STP</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>PCR</td>
<td>Path Control and Reservation</td>
<td>TESI</td>
<td>Traffic Engineering Service Instance</td>
</tr>
<tr>
<td>PE</td>
<td>Provider Edge</td>
<td>TSN</td>
<td>Time Sensitive Networks</td>
</tr>
<tr>
<td>PFC</td>
<td>Priority Flow Control</td>
<td>TTL</td>
<td>Time to Live</td>
</tr>
<tr>
<td>PTP</td>
<td>Precision Time Protocol</td>
<td>TLV</td>
<td>Type, Length, Value</td>
</tr>
<tr>
<td>Q-in-Q</td>
<td>used for PB</td>
<td>VDP</td>
<td>VSI Discovery and Configuration Protocol</td>
</tr>
<tr>
<td>QCN</td>
<td>Quantized Congestion Notification</td>
<td>VID</td>
<td>VLAN Identifier</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
<td>VLAN</td>
<td>Virtual LAN</td>
</tr>
<tr>
<td>SDH</td>
<td>Synchronous Digital Hierarchy</td>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>S-VID</td>
<td>Service VLAN ID</td>
<td>VN</td>
<td>Virtual Network</td>
</tr>
<tr>
<td>S-VLAN</td>
<td>Service VLAN</td>
<td>VoIP</td>
<td>Voice over IP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VSI</td>
<td>Virtual Service Instance</td>
</tr>
</tbody>
</table>