
Information Models, Data Models, and YANG

Jürgen Schönwälder

IETF 86, Orlando, 2013-03-14

1 / 12

Information Models (RFC 3444)

B Information Models are used to model managed objects at a
conceptual level, independent of any specific protocols used to
transport the data (protocol agnostic).

B The degree of specificity (or detail) of the abstractions
defined in the information model depends on the modeling
needs of its designers.

B In order to make the overall design as clear as possible,
information models should hide protocol and implementation
details.

B Information models focus on relationships between managed
objects.

B Information models are often represented in Unified Modeling
Language (class) diagrams, but there are also informal
information models written in plain English language.

2 / 12

Data Models (RFC 3444)

B Data Models are defined at a lower level of abstraction and
include many details (compared to information models).

B They are intended for implementors and include
implementation- and protocol-specific constructs.

B Data models are often represented in formal data definition
languages that are specific to the management protocol being
used.

3 / 12

Information Models vs. Data Models

conceptual/abstract model
for designers and operators

concrete/detailed model
for implementors

DM DMDM

IM

B Since conceptual models can be implemented in different
ways, multiple data models can be derived from a single
Information Model.

B Although information models and data models serve different
purposes, it is not always easy to decide which detail belongs
to an information model and which belongs to a data model.

B Similarily, it is sometimes difficult to determine whether an
abstraction belongs to an information model or a data model.

4 / 12

IMs and DMs in the Real World

SMIv2

Information Model

OMG IDL

Definitions

BER

Instance Data

XSD

XMLBER

Module Module
YANG

Module
MIB PIP

Module
Interface Data Model

Information Model

SPPI

Instances

MIB Provisioning
Variables

XML
Documents

B The architecture for differentiated services (RFC 2475) is an
example for an informal definition of the DiffServ information
model. The DiffServ MIB module (RFC 3289) and the
DiffServ PIP module (RFC 3317) are examples of data models
conforming to the DiffServ information model.

B The IPFIX configuration specification (RFC 6728) contains
both an information model and a data model.

5 / 12

So what is YANG?

YANG is a data modeling language used to model configuration
and state data manipulated by the NETCONF protocol,
NETCONF remote procedure calls, and NETCONF notifications.

B hierarchical configuration/state data models

B reusable types and groupings

B data model extensibility through augmentations

B supports the definition of operations (RPCs)

B formal constraints for configuration validation

B data model modularity through features / sub-modules

B versioning rules and development support

B well defined ways to extend the language

B easy to read and process textual representation

6 / 12

Even more reasons to use YANG. . .

B produced and maintained by the IETF

B tool support (written by people active in the IETF)

B growing set of (reusable) definitions (typedefs, groupings)

B support via YANG doctors

B JSON encodings possible (currently not used by NETCONF)

B flexibility and extensibility

For a more detailed technical introduction to NETCONF and
YANG, see the IETF 84 tutorial available on the IETF EDU pages:

http://www.ietf.org/edu/technical-tutorials.html

7 / 12

http://www.ietf.org/edu/technical-tutorials.html

Defining YANG Data Models – I

B Start by identifying the basic concepts that need to be
modeled, give those concepts good names, and identify
relationships between them.

B Sketch the structure of the data model; if necessary break
things into meaningful pieces (different modules or
submodules, consider defining features for optional things).

B Use tools to generate summaries like YANG tree diagrams
since they help to understand the structure of a larger data
model (existing tools usually work fine with somewhat
incomplete data model definitions).

B Include the generated diagrams as supporting documentation
into the specification.

B Write example data instances in XML and validate them
against the model; make sure you like the instance data and
consider including some of the examples in the documentation.

8 / 12

Defining YANG Data Models – II

B Sometimes it is useful to factor out reusable components
(e.g., type definitions or groupings).

B Sometimes a modeled function or data type is rather generic
and not WG specific (talk with YANG doctors – they might
help getting the definition into the “right” place).

B For type definitions, think about canonical representations if
certain values may have multiple representations.

B Do not over constrain data models (be careful with when and
must statements); design for exensibility by both future
standards and vendor-specific extensions.

B Manage your namespaces and be consistent with your naming
conventions.

B Use tools to validate your data model (and sample data
instances), pick tool options that ensure compliance to IETF
rules (which are a bit more strict than YANG itself).

9 / 12

YANG Tree Diagrams

Tree diagrams summarize the hierarchical structure of YANG data
models:

B Brackets “[“ and “]” enclose list keys.

B Abbreviations before data node names: “rw” means
configuration (read-write) and “ro” state data (read-only).

B Symbols after data node names: “?” means an optional node
and “*” denotes a “leaf-list”.

B Parentheses enclose choice and case nodes, and case nodes
are also marked with a colon (“:”).

B Ellipsis (“...”) stands for contents of subtrees that are not
shown.

10 / 12

YANG Tree Diagram Example

module: foo

+--rw mycontainer

+--rw mylist [mykey]

+--rw mykey string

+--rw (alternative)?

| +--:(simple)

| | +--rw simple? uint8

| +--:(multi)

| +--rw multivalued* string

+--ro state enumeration

module foo {

container mycontainer {

list mylist {

key mykey;

leaf mykey { type string; }

choice alternative {

case simple {

leaf "simple" { type uint8; }

}

case multi {

leaf-list "multivalued" { type string; }

}

}

leaf "state" { config false; mandatory true; type enumeration; }

}

}

}

11 / 12

References

A. Pras and J. Schönwälder.

On the Difference between Information Models and Data Models.
RFC 3444, University of Twente, University of Osnabrueck, January 2003.

M. Bjorklund.

YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF).
RFC 6020, Tail-f Systems, October 2010.

J. Schönwälder.

Common YANG Data Types.
RFC 6021, Jacobs University, October 2010.

A. Bierman.

Guidelines for Authors and Reviewers of YANG Data Model Documents.
RFC 6087, Brocade, January 2011.

12 / 12

