ICN Research Challenges draft-kutscher-icnrg-challenges-00

Dirk Kutscher, Suyong Eum, Kostas Pentikousis, Ioannis Psaras, Daniel Corujo, Damien Saucez

Document Purpose

• WHY

• Problems and pain points in today's networks

HOW can ICN help Eupdomontal ICN con

Fundamental ICN concepts

• WHAT to do in ICNRG

• Research challenges, important topics

Possible RESULTS Impact on IETF work

Note:

- Originally titled "Problem Statement"
- Discussion whether this is useful
- General consensus: rather describe expected challenges, i.e., topics to be worked on
- Want to add
 - some motivation (what are the critical issues, why do we do this)
 - explanation: what is the general idea (concepts)
- Hence the following structure...

Structure

- 1. Introduction
 - example pain point, example ICN solution, brief concept overview
- 2. Problems with information distribution today
 - Inefficiencies, security issues
- 3. Concepts
 - Requesting named-data as a first-order network service
- 4. Research Challenges
 - naming, security, routing, name resolution, transport, caching, interconnection, management, mobility management
- 5. Impact on IETF work
 - anticipated changes to Internet architecture and protocols, relation to existing work (e.g., CDNI)

Problems with Information Distribution Today

- Today's overlay approaches to CDN, M2M vs. accessing named data on network layer
- Sub-optimal routing
- Difficulties in leveraging multicast/broadcast capabilities
- Difficulties in establishing direct communication
- Application-specific approaches to caching, replication

ICN Concepts

- Accessing named data objects as a firstorder network service
- Name-content binding validation and other features
- Leveraging ubiquitous storage
- New options for transport

Naming and Security

- Currently describing hierarchically structured and flat names
- Describing static and dynamic object naming challenges
- Requestor privacy
- Updating and versioning
- Managing object accessibility

Transport Services

Research challenges:

- Several possible path between a sender and a receiver
 - How to utilize multiple sources?
 - How to control data rate on multiple paths?
- Requests can be aggregated by routers
 - How to make the distinction between retransmissions or new requests?
 - How can a source determine the number of requesters?
- Receiver-driven communication or Routerdriven communication?

In-Network Caching (1/2)

Three main challenges:

- Cache Placement
 - On-path vs off-path
 - Is on-path on-shortest(-BGP)-path?
 - Off-(shortest-)path has been investigated a lot
 - On-path is more challenging
- Content Placement Content-to-Cache Distribution
 - What is to be cached and who decides?
 - What are the criteria/metrics to decide where to cache what?
 - Popularity, traffic characteristics?
 - How big should caches be?

In-Network Caching (2/2)

Request-to-Cache Routing

- Relates to name-based routing
- Relates to collaboration between the data and control places
- Do we allow for cache-aware routing? And who is "aware"?
 - Cache-aware routing introduces complexity, but
 - Cache-unaware routing reduces chances of cache hits
- Affects traffic dynamics through request redirection

Routing and Resolution System Scalability [1/2]

	Numbers	Comments & reference	
Size of BGP routing table	4.5*10^5	Now, an up-to-date BGP router is working with this number. [bgp.potaroo.net]	
Technically speaking	10^11	Back in 2007, that number of data objects could be supported technically - DONA.	
Domains	4.6*10^7	Routing with domain names? [www.domainworldwide.com]	
Indexed web pages	5*10^10	Google's indexed web pages [www. worldwidewebsize.com/]	
Indexed URLs	10^12	Google's indexed URLs <u>back in 2008</u> [www.pcworld.com]	
Do we expect more ?	10^22	Updated or version up data object, a group of data objects, or more and more.	

Routing and Resolution System Scalability [2/2]

	Route-By-Name Routing (RBNR)	Lookup-By-Name Routing (LBNR)	Hybrid Routing (HR)
Operation	Discovery - Delivery	Resolution - Discovery - Delivery	RBNR + LBNR
Challenges	How to aggregate the names of data objects to reduce the number of routing entries?	<u>Fast lookup</u> : mapping the name of data object to its locators (copies as well?)	How to design a scalable mapping system, which given the name of data object, it should return a destination domain locator so that a user request can be encapsulated and forwarded to the domain?
	How does user learn the name which is designed for aggregation by provider?	<u>Fast update</u> : location of data object is expected to change frequently. Multiple data objects may change their location simultaneously, e.g. data objects in a laptop?	
	Can we still achieve a scalable routing without name aggregation? e.g., compact routing, random walk, greedy routing, etc?		
	How to incorporate copies of a data object in in-network caches in these routing schemes?		

Mobility Management [1/2]

- Different ICN deployments provide intrinsic mobility support
- However, such support is not optimized
 - Seamless handover for real-time multimedia?
 - Network resources negotiation and activation
- Moreover, client-mobility and source-mobility are different
 - How the intrinsic caching and forwarding will be impacted?
- Finally, with the different access technologies available today, how will their unique mechanisms impact an optimized mobility-supported scenario?

Mobility Management [2/2]

Research Challenges:

- How can content reaching mechanisms interface with specific link operations, such as identifying which links are available for a certain content
- How to make mobility as a service that is only activated when the specific user/content/conditions require it
- How to coordinate mobility management between the node and the network for optimization and policing procedures?

Network Management [1/2]

- Current management support tools (ranging from SNMP to full-fledged AAA and policing infrastructures) are currently host-centric or end-to-end oriented
- In ICN, not only content becomes the core aspect for management requirements
 - it also sees network management leveraging intrinsic ICN mechanisms
- On one hand, such mechanisms need to be used to address common network management procedures
 - How to identify nodes, networks, segments using ICN naming?
- On the other hand, native ICN aspects can open up new scenarios and considerations for network management as a concept
 - E.g., content-oriented management and caching

Network Management [2/2]

Research Challenges:

- Manage and control content reception at the destination
- Coordination of management information exchange and control between ICN nodes and ICN network control points
- Identification of management and controlling actions and items through information naming
- Relationship between NDOs and host identities identification

Status and Next Steps

- Section about "Problems today": rather talk about goals
- Align level of detail for sections
- Separate Naming and security sections
 have more detailed TODO list for those
- "Other challenges"
 - want to at least other related challenges not discussed here: business models
- Got volunteers for additional input
 - Thomas/Matthias: mobility/security
 - Damien: security
- Plan is to update this after IETF-86

Feedback?