Scaling the Address Resolution Protocol for Large Data Centers (SARP)
draft-nachum-sarp-04

Youval Nachum Marvell
Linda Dunbar Huawei
Ilan Yerushalmi Marvell
Tal Mizrahi Marvell

IETF Meeting 86, March 2013
History of this Draft

- **March 2012 – draft 00.**
- Discussion in ARMD mailing list.

- **July 2012 – IETF 84 – presented in INTAREA WG.**
 - Main feedback: need to equally address IPv4 and IPv6.

- **October 2012 – draft 03.**

- **March 2013 – draft 04:**
 - Address issues discussed at mailing list
Perceived issues associated with subnets spanning across multiple L2/L3 boundary router ports:

- ARP/ND messages are flooded to many physical link segments which can reduce bandwidth utilization for user traffic;
- the ARP/ND processing load impact on L2/L3 boundary routers;
- intermediate switches exposed to all host MAC addresses which can dramatically increase their FDB size;
- In IPv4, every end station in a subnet receives ARP broadcast messages from all other end stations in the subnet. IPv6 ND has eliminated this issue by using multicast.
Real Impacting Issues?

- As majority of servers move towards 1G/10G links, the traffic taken by ARP/ND broadcast/multicast becomes less significant
 - ARP/ND messages are flooded to many physical link segments which can reduce bandwidth utilization for user traffic;

- the ARP/ND processing load impact on L2/L3 boundary routers;
 - [ARMD-Statistics] has shown that the major impact of large number of mobile VMs in Data Center is to the L2/L3 boundary routers.
 - Dual stack makes it worse

- intermediate switches being exposed to all host MAC addresses which can dramatically increase their FDB size;

- Today’s servers only need <2% CPU to process 2000/s ARP i.e. impact to Server is insignificant
 - In IPv4, every end station in a subnet receives ARP broadcast messages from all other end stations in the subnet. IPv6 ND has eliminated this issue by using multicast.
Background – Proxy ARP

- Proxy ARP (RFC 1027, RFC 1009, RFC 925).
- Proxy ARP responds based on IP subnet.
 - Assumption: IP subnet implies location.
SARP

- Edge devices: proxy SARP.
- IP subnet does not imply location.
- MAC-W / MAC-E imply location.
SARP Cache

1. ARP/ND: IP-D
2. Reply: MAC-E
SARP – Data Plane

1. **IP-S → IP-D, MAC-S → MAC-E**
 - IP-S
 - MAC-S
 - West Site

2. **IP-S → IP-D, MAC-W → MAC-E**
 - SARP Proxy
 - MAC-W
 - SARP Connectivity

3. **IP-S → IP-D, MAC-W → MAC-D**
 - IP-D
 - MAC-D
 - East Site
MAC address table of bridges in the west site:
- Local site addresses, e.g., MAC-S.
- Edge devices, e.g., MAC-E.
- No need for addresses of remote sites.
Local SARP cache limits broadcast domain for known IP addresses.
SARP over Overlay Network

SARP is agnostic to the transport technology, e.g. L2VPN.
SARP with VM Migration

- **IPv4**: Gratuitous ARP is used to notify network about migration.
- **IPv6**: unsolicited neighbor advertisement is used.
- **No need for additional control protocols.**
- **Transparent to inter-site network and protocols.**
Next Steps

- Receive feedbacks from WG.
- WG adoption.
Thanks