
Google Confidential and Proprietary

Why is BTC so hard?
Matt Mathis
mattmathis@google.com



Google Confidential and Proprietary

Why is Bulk Transport Capacity so hard to measure?

Throughput maximization does not work for measurement

● Basics of congestion control
● Circular dependencies, Heisenberg and equilibrium behavior
● Examples of measurements that fail
● A better approach - application controlled traffic
● Aka "pseudo CBR"
● Further Opportunities
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TCP is throughput maximizing

● By design....
● TCP fills any/every bottleneck by creating a queue

○ This raises the RTT

● The network "regulates" the queue by dropping packets
○ e.g. it raises the loss rate
○ Explicitly as part of "Automatic Queue Management" (AQM)
○ Implicitly for drop tail queues (perhaps with bufferbloat)
○ Which causes TCP to slow down

● Circular dependencies between data rate, loss rate and RTT
○ "Equilibrium" behavior
○ Any change in any component/parameter affects all others

● TCP causes self inflicted congestion
○ The Heisenberg effect: the measurement changes the thing measured
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Traditional TCP bulk performance model

● Describes the TCP "Sawtooth" in steady state

● Three main variables: Rate, RTT and loss rate, p
○ C is a constant that depends on TCP implementation details, etc 

 

 
● For bulk transport steady state, this is a statement of equilibrium

○ If you control any 2 parameters, TCP adjusts the third to agree
○ E.g. for a fixed path (fixed Rate and RTT) TCP "solves" for p

● This principle applies to all TCP models
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Dissect the TCP model

● All TCP models have the same general form
● The first term: (MSS/RTT)

○ Scales number of packets in flight to the data rate in bytes/second
○ Always has RTT in the denominator
○ Comes directly from "window behavior" in TCP (and other protocols)

● Second term estimates the number of packets in flight
○ Varies widely from model to model

■ The above model only applies to sustained bulk data
■ A direct consequence of sender side control algorithms
■ Not a solved problem in general 
■ But all should have "similar forms"

○ Mostly depends on loss rate, sometimes RTT, etc
○ Other terms folded into constant C

■ Between 0.7 and 1.4 for most TCP's
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Some ways in which TCP fails as a measurement protocol

● Counterintuitive RTT effects
● Meta Heisenberg at every shared bottleneck
● Performance is a system property
● Congested performance is a system property
● Local testing leads to incorrect blame and bad politics
● Not actionable by ISPs
● No model for concatenating paths
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Counterintuitive RTT effects

● A better (shorter) path reduces the RTT
● But the data rate stays the same
● So the average quantity of data in flight must be smaller
● So the losses must happen sooner or more frequently
● So the loss probability must be higher

● Shorter RTT also has shorter request Response Time (RT)
● So the user with the better experience has higher losses!
● Raw loss statistics do not imply network quality
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Meta Heisenberg at every shared bottleneck

● Heisenberg knew he was measuring electrons with photons
○ For networks, the relative "stiffness" is unknown
○ Measurement stream vs the cross traffic

● Things that increase the stiffness of the cross traffic:
○ Short RTT
○ Many flows
○ Additional bottlenecks stabilizing the cross traffic  

● Stiffness can vary by orders of magnitude in either direction
○ A single measurement tells you very little

Server Client

Measurement flow dominates

Server Client

Cross traffic 
dominates
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Congested TCP performance is a system property

● TCP congestion control is a complicated control system

● Every component contributes to the overall performance
○ TCP implementation details and quality
○ Application behavior
○ Network link properties
○ Other portions of the network (e.g. the home net)
○ End-to-end RTT

● Since the system has circular dependencies
○ Every metric depends on every component

● Calibration is (essentially) impossible
○ See RFC 3148 "A Framework for ... Bulk Transfer ... Metrics"
○ RTT dependence is the big killer

■ The NPAD tool (Measurement-Lab) attempted to address RTT
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Local testing leads to incorrect blame and bad politics

● The users tests the ISP and get one result
● The ISP owns just one of many elements of the test

○ The ISP does their own tests
● User measurements NEVER agree with the ISP's measurements

○ (NOTE: vantage sensitivity is a serious problem)
● ISP's logical conclusion: the fault must lie elsewhere

○ The ISP is being blamed for other people's problems
● User's logical conclusion: the ISP is cooking the test results

○ Anything hidden or proprietary is probably corrupt
● But both conclusions are probably wrong

Vantage sensitivity poisons sane conversations about policy 
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Not actionable by ISPs

● Note that the ISPs wants to sell layer 2 (link) or 3 (IP) services
○ User wants to buy end-to-end layer 4 (TCP services)

● Since TCP performance is a system property
○ It can't be replicated by others

■ Vantage point matters
○ The ISP can't create the same path or system as a user
○ Testing an alternate path may not have the same symptoms
○ Fixing an alternate path may not help the user

● It would be foolish to include non-actionable items in a SLA
○ Never see real SLA language about application performance, ever

● Failing workaround.....
○ Define SLAs in terms of private, ISP based measurements
○ But they don't agree with user's measurements
○ Users assume that unverifiable measures are crooked......

● Unverifiable measurement has bad karma
○ This is why Measurement Lab is so focused on open measurement
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No model for concatenating paths

● Want to predict properties S1->C2 
○ From measuring S1->C1 and S2->C2

● This does work for one case
○ When there is zero cross traffic then

■ rate(S1->C2) = MIN( rate(S1->C1), rate(S2->C2) )
■ Loss rate if you can invert a suitable model

○ But you may not be able to tell if you have zero cross traffic
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No model for concatenating paths 2

● Want to predict properties S1->C2 
○ From measuring S1->C1 and S2->C2

● With unknown cross traffic - There is no hope....
○ Data rate always worse than either path alone

■ And sometimes very much worse due to multiplicative cross terms
○ Loss rate can be better than either path alone

■ Due to RTT effects, if the cross traffic is small
○ Loss rate can be loss(S1->C1)+loss(S2->C2)
○ or anywhere in between

● TCP has zero predictive value due to its equilibrium behavior!
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Application controlled avoids equilibrium behavior

● Control the data rate by a non-network element such as a codec
○ TCP chronically runs out of data

■ Must avoid "startup" bursts too
○ Or a real time process controls UDP transmissions

● The measurement traffic should not cause queues or losses
○ Any queues or losses should be caused by cross traffic

● "Open loop" all congestion control algorithms
○ Rate (or traffic pattern) is determined only by the application (tester)
○ Losses and RTT are determined only by the network and cross traffic

● This suppresses all circular dependencies
○ Can measure the "open loop response" of each component
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Model concatenation using application controlled traffic

● Want to predict properties S1->C2 from S1->C1 and S2->C2
○ Measure both sub-paths with fixed rate traffic

● Trivial to predict the loss rate 
○ Losses determined solely by the network and are statistically independent
○ losses(S1->C2) = losses(S1->C1)+losses(S2->C2)  // small probability assumption

● Supports algebra and inference on loss rate
○ Loss rate can be treated as a linear property!
○ Can predict S2->C2 by subtracting loss(S1->C1) from loss(S1->C2)
○ We can do tomography!
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Model Based Metrics

● Use performance targets to precompute
○ Traffic Patterns
○ Success Critera

● Perform open loop testing
○ Details of the network behavior do not affect the traffic
○ Details of the testing topology do not affect the traffic
○ Loss measurements are independent per section
○ For low rates, losses can be treated as linear

● Solves ALL of the problems above with throughput maximizing 
○ Especially "vantage sensitivity"


