
Google Confidential and Proprietary

Why is BTC so hard?
Matt Mathis
mattmathis@google.com

Google Confidential and Proprietary

Why is Bulk Transport Capacity so hard to measure?

Throughput maximization does not work for measurement

● Basics of congestion control
● Circular dependencies, Heisenberg and equilibrium behavior
● Examples of measurements that fail
● A better approach - application controlled traffic
● Aka "pseudo CBR"
● Further Opportunities

Google Confidential and Proprietary

TCP is throughput maximizing

● By design....
● TCP fills any/every bottleneck by creating a queue

○ This raises the RTT

● The network "regulates" the queue by dropping packets
○ e.g. it raises the loss rate
○ Explicitly as part of "Automatic Queue Management" (AQM)
○ Implicitly for drop tail queues (perhaps with bufferbloat)
○ Which causes TCP to slow down

● Circular dependencies between data rate, loss rate and RTT
○ "Equilibrium" behavior
○ Any change in any component/parameter affects all others

● TCP causes self inflicted congestion
○ The Heisenberg effect: the measurement changes the thing measured

Google Confidential and Proprietary

Traditional TCP bulk performance model

● Describes the TCP "Sawtooth" in steady state

● Three main variables: Rate, RTT and loss rate, p
○ C is a constant that depends on TCP implementation details, etc

● For bulk transport steady state, this is a statement of equilibrium

○ If you control any 2 parameters, TCP adjusts the third to agree
○ E.g. for a fixed path (fixed Rate and RTT) TCP "solves" for p

● This principle applies to all TCP models

Google Confidential and Proprietary

Dissect the TCP model

● All TCP models have the same general form
● The first term: (MSS/RTT)

○ Scales number of packets in flight to the data rate in bytes/second
○ Always has RTT in the denominator
○ Comes directly from "window behavior" in TCP (and other protocols)

● Second term estimates the number of packets in flight
○ Varies widely from model to model

■ The above model only applies to sustained bulk data
■ A direct consequence of sender side control algorithms
■ Not a solved problem in general
■ But all should have "similar forms"

○ Mostly depends on loss rate, sometimes RTT, etc
○ Other terms folded into constant C

■ Between 0.7 and 1.4 for most TCP's

Google Confidential and Proprietary

Some ways in which TCP fails as a measurement protocol

● Counterintuitive RTT effects
● Meta Heisenberg at every shared bottleneck
● Performance is a system property
● Congested performance is a system property
● Local testing leads to incorrect blame and bad politics
● Not actionable by ISPs
● No model for concatenating paths

Google Confidential and Proprietary

Counterintuitive RTT effects

● A better (shorter) path reduces the RTT
● But the data rate stays the same
● So the average quantity of data in flight must be smaller
● So the losses must happen sooner or more frequently
● So the loss probability must be higher

● Shorter RTT also has shorter request Response Time (RT)
● So the user with the better experience has higher losses!
● Raw loss statistics do not imply network quality

S1

Server

C1

Fixed Rate Bottleneck
 (and fixed queue with no cross traffic)

Variable delay

Client

Google Confidential and Proprietary

Meta Heisenberg at every shared bottleneck

● Heisenberg knew he was measuring electrons with photons
○ For networks, the relative "stiffness" is unknown
○ Measurement stream vs the cross traffic

● Things that increase the stiffness of the cross traffic:
○ Short RTT
○ Many flows
○ Additional bottlenecks stabilizing the cross traffic

● Stiffness can vary by orders of magnitude in either direction
○ A single measurement tells you very little

Server Client

Measurement flow dominates

Server Client

Cross traffic
dominates

Google Confidential and Proprietary

Congested TCP performance is a system property

● TCP congestion control is a complicated control system

● Every component contributes to the overall performance
○ TCP implementation details and quality
○ Application behavior
○ Network link properties
○ Other portions of the network (e.g. the home net)
○ End-to-end RTT

● Since the system has circular dependencies
○ Every metric depends on every component

● Calibration is (essentially) impossible
○ See RFC 3148 "A Framework for ... Bulk Transfer ... Metrics"
○ RTT dependence is the big killer

■ The NPAD tool (Measurement-Lab) attempted to address RTT

Google Confidential and Proprietary

Local testing leads to incorrect blame and bad politics

● The users tests the ISP and get one result
● The ISP owns just one of many elements of the test

○ The ISP does their own tests
● User measurements NEVER agree with the ISP's measurements

○ (NOTE: vantage sensitivity is a serious problem)
● ISP's logical conclusion: the fault must lie elsewhere

○ The ISP is being blamed for other people's problems
● User's logical conclusion: the ISP is cooking the test results

○ Anything hidden or proprietary is probably corrupt
● But both conclusions are probably wrong

Vantage sensitivity poisons sane conversations about policy

Google Confidential and Proprietary

Not actionable by ISPs

● Note that the ISPs wants to sell layer 2 (link) or 3 (IP) services
○ User wants to buy end-to-end layer 4 (TCP services)

● Since TCP performance is a system property
○ It can't be replicated by others

■ Vantage point matters
○ The ISP can't create the same path or system as a user
○ Testing an alternate path may not have the same symptoms
○ Fixing an alternate path may not help the user

● It would be foolish to include non-actionable items in a SLA
○ Never see real SLA language about application performance, ever

● Failing workaround.....
○ Define SLAs in terms of private, ISP based measurements
○ But they don't agree with user's measurements
○ Users assume that unverifiable measures are crooked......

● Unverifiable measurement has bad karma
○ This is why Measurement Lab is so focused on open measurement

Google Confidential and Proprietary

No model for concatenating paths

● Want to predict properties S1->C2
○ From measuring S1->C1 and S2->C2

● This does work for one case
○ When there is zero cross traffic then

■ rate(S1->C2) = MIN(rate(S1->C1), rate(S2->C2))
■ Loss rate if you can invert a suitable model

○ But you may not be able to tell if you have zero cross traffic

S1 S2

C1 C2

Unknown
 cross traffic

Unknown
Link Rate

Unknown
 cross traffic

Unknown
Link Rate

Google Confidential and Proprietary

No model for concatenating paths 2

● Want to predict properties S1->C2
○ From measuring S1->C1 and S2->C2

● With unknown cross traffic - There is no hope....
○ Data rate always worse than either path alone

■ And sometimes very much worse due to multiplicative cross terms
○ Loss rate can be better than either path alone

■ Due to RTT effects, if the cross traffic is small
○ Loss rate can be loss(S1->C1)+loss(S2->C2)
○ or anywhere in between

● TCP has zero predictive value due to its equilibrium behavior!

S1 S2

C1 C2

Unknown
 cross traffic

Unknown
Link Rate

Unknown
 cross traffic

Unknown
Link Rate

Google Confidential and Proprietary

Application controlled avoids equilibrium behavior

● Control the data rate by a non-network element such as a codec
○ TCP chronically runs out of data

■ Must avoid "startup" bursts too
○ Or a real time process controls UDP transmissions

● The measurement traffic should not cause queues or losses
○ Any queues or losses should be caused by cross traffic

● "Open loop" all congestion control algorithms
○ Rate (or traffic pattern) is determined only by the application (tester)
○ Losses and RTT are determined only by the network and cross traffic

● This suppresses all circular dependencies
○ Can measure the "open loop response" of each component

Google Confidential and Proprietary

Model concatenation using application controlled traffic

● Want to predict properties S1->C2 from S1->C1 and S2->C2
○ Measure both sub-paths with fixed rate traffic

● Trivial to predict the loss rate
○ Losses determined solely by the network and are statistically independent
○ losses(S1->C2) = losses(S1->C1)+losses(S2->C2) // small probability assumption

● Supports algebra and inference on loss rate
○ Loss rate can be treated as a linear property!
○ Can predict S2->C2 by subtracting loss(S1->C1) from loss(S1->C2)
○ We can do tomography!

S1 S2

C1 C2

Unknown
 cross traffic

Unknown
Link Rate

Unknown
 cross traffic

Unknown
Link Rate

Google Confidential and Proprietary

Model Based Metrics

● Use performance targets to precompute
○ Traffic Patterns
○ Success Critera

● Perform open loop testing
○ Details of the network behavior do not affect the traffic
○ Details of the testing topology do not affect the traffic
○ Loss measurements are independent per section
○ For low rates, losses can be treated as linear

● Solves ALL of the problems above with throughput maximizing
○ Especially "vantage sensitivity"

