IKEv2 Alternate Outer IP Address Extension

draft-mglt-ipsecme-alternate-outer-address-00.txt

D. Migault

12/03/2013- IETF86- Orlando
Addressed Problem

This draft considers the following situation:

- A VPN Client is attached to a Security Gateway (IKEv2 + VPN)
- At least one has multiple interfaces
- We want different paths for the IKEv2 and VPN channel
- We want to be able to use multiple interfaces (i.e., multiple VPNs) with a single IKEv2 channel

The problem addressed is: How can a VPN Client negotiate the outer IP addresses of a SA

- Negotiation of the outer IP address occurs during the SA negotiation
- We define the Alternate Outer IP Address (OADD) Transform
VPN End User with Multiple Interfaces

Addressed Problem

Use cases

VPN End User

Security Gateway

Interface_0 : VPN_0

Interface_1 : VPN_1
Security Gateway with Multiple Interfaces

+---+ +---+
VPN		Security Gateway
End User		
+-----------------+ +-----------------+		
Interface_0 : VPN_0	v	Interface_1 : VPN_1
============= Security =============		
^ ============		
Distributed Security Gateways

IKEv2 Interface_0 IKE Security Gateway

VPN Channel 📩 Security

End User

VPN Channel 📩 Security Interface_1 Gateway

+------------------+
| Interface_i |
| VPN Gateway |
| Security |
+------------------+
SA Payload Structure

SA Payload
|-- Proposal #1 (Proto ID = ESP(3), SPI size = 4,
| 7 transforms, SPI = 0x052357bb)
 |-- Transform ENCR (Name = ENCR_AES_CBC)
 |-- Attribute (Key Length = 128)
 |-- Transform ENCR (Name = ENCR_AES_CBC)
 |-- Attribute (Key Length = 256)
 |-- Transform INTEG (Name = AUTH_HMAC_SHA1_96)
 |-- Transform INTEG (Name = AUTH_AES_XCBC_96)
 |-- Transform ESN (Name = ESNs)
 |-- Transform ESN (Name = No ESNs)
OADD Transform Description

Here are the new entities involved:

- A new Transform: OADD
- New Transform Type: INIT and RESP
- New Attributes: IP and ANY_IP

To advertise that Alternate Outer IP addresses can negotiated:

- ALTERNATE_OUTER_IP_ADDRESS_SUPPORTED
Basic Exchange

Initiator Responder

Initiator Responder

--- From this exchange:
- the Initiator and the Responder support
the alternate outer IP address extension
- no NAT has been detected

HDR, SAi1, KEi, Ni -->
N(ALTERNATE_OUTER_IP_ADDRESS_SUPPORTED)
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)

<-- HDR, SAr1, KEr, Nr, [CERTREQ]
N(ALTERNATE_OUTER_IP_ADDRESS_SUPPORTED)
N(NAT_DETECTION_SOURCE_IP),
N(NAT_DETECTION_DESTINATION_IP)
Basic Exchange

Initiator Responder
--

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, TSi, TSr
SAi2(Proposal(ENCR, INTEG, ESN, < proposes IP1, IP2
 OADD(INIT, IP1), for the init., ANY
 OADD(INIT, IP2), IP for the resp.
 OADD(RESP, ANY_IP))
Proposal(ENCR, INTEG, ESN)))} < proposes to use
 --> IKEv2 IP for the VPN outer IP

<-- HDR, SK {IDr, [CERT,] AUTH, TSi, TSr,
 SAr2(Proposal(ENCR, INTEG, ESN,
 OADD(INIT, IP1),
 OADD(RESP, IPr)))}