Objectives

- This draft describes how E-VPN can be used as part of an IRB solution to perform both intra-subnet as well as inter-subnet switching.
- The solution provides optimum unicast and multicast forwarding both within a DC as well as between DCs (East-West traffic).
E-VPN PE Model for IRB

One way to visualize this model is to consider a bridged virtual interface (BVI) to be associated with every bridge-domain in a given EVI. The BVI is an L3 routed interface (hence terminates L2). All the

Figure 3: E-VPN PE Model for Seamless Interoperability with IP-VPN
Reference Diagram

Figure 2: Interoperability Use-Cases
Scenarios of Interest

1. Connecting E-VPN sites within a DC
2. Connecting E-VPN sites in different DCs without route aggregation
3. Connecting E-VPN sites in different DCs with route aggregation
4. Connecting IP-VPN sites and E-VPN sites with route aggregation
5. Connecting IP-VPN sites and E-VPN sites without route aggregation
Scenario-1

Inter-Subnet Forwarding Among E-VPN NVEs within a DC
Scenario-2

Inter-Subnet Forwarding Among E-VPN NVEs in Different DCs without Route Aggregation
Scenario-3

Inter-Subnet Forwarding Among E-VPN NVEs in Different DCs with Route Aggregation
Scenario-4

Inter-Subnet Forwarding Among IP-VPN Sites and E-VPN NVEs with Route Aggregation
E-VPN based IRB Solution provides

- Optimal forwarding for intra-subnet (L2) traffic
- Optimal forwarding for inter-subnet (L3) traffic
- Support for both ingress replication as well as P2MP tunnels for multicast traffic
- Support for multi-homing with active/active redundancy and per-flow load balancing
- Support for network-based as well as host-based overlay models
- Support for consistent policy-based forwarding for both L2 and L3 traffic
Next Steps

- Solicit comments from WG