BGP L3VPN Virtual CE

draft-fang-l3vpn-virtual-ce-01

Luyuan Fang Cisco

John Evans Cisco

David Ward Cisco

Rex Fernando Cisco

John Mullooly Cisco

Ning So TATA

Nabil Bitar Verizon

Maria Napierala AT&T

IETF 86, Orlando, FL, 3/16/2013

Motivation

- Architecture re-design for virtualized DC
 - Goal: simplicity, routing/forwarding optimization, and easier service chaining.
 - A virtualized container: It includes virtual CE, virtual appliances, application VMs, as co-residents on virtualized servers.
 - virtual CE can interconnect the virtual appliances (e.g., FW, LB, NAT), applications (e.g., Web, App., and DB) in a co-located fashion.
 - Virtualizing L3-L7 on a per-tenant basis provides simplicity for managing per tenant service orchestration, tenant container creation and moves, capacity planning across tenants and per-tenant policies.
- Leverage the SP strength in I3vpn in the WAN
 - Inter-connecting through l3vpn in the WAN
 - Cloud extension for managed l3vpn services

Virtual CE Definition

- Virtual CE (vCE): a software instance of IP VPN CE function which can reside in any network or compute devices.
 - For example, a vCE may reside in an end device, such as a server in a DC, where the application VMs reside.
 - The CE functionality and management models remain the same as defined in [RFC4364].

Characteristics of vCE

- Same as a physical CE, a virtual CE supports a single tenant.
- A single tenant can use multiple physical or virtual CEs.
- An end device, such as a server, can support one or more vCE(s).
- Virtual CE and virtual PE are complimentary approaches for extending IP VPN into tenant containers.

vCE Reference Model

vCE in the end device, e.g. a VM in a server

vCE Service Architecture

A Virtualized Container with vCE in an End Device

Control Plane

- 1. Use distributed control protocol, e.g., BGP
 - BGP is policy rich, a helps to avoid single point of failure
 - But the vCE must support BGP
- 2. Use Static routing
 - Simple
 - But it does not provide rich policy and may have scaling issues.
- 3. Use Controller approach
 - MUST use standard interfaces

Data Plane

- 1. If the vCE and the application VM which the vCE is connecting are co-located in the same server, the connection is internal to the server, no external protocol involved.
- 2. If the vCE and the application VM which the vCE is connecting are located in different devices, standard external protocols are needed. The forwarding can be native or overlay techniques.

QoS

- Differentiated Services [RFC2475] Quality of Service (QoS) is standard functionality for physical CEs and MUST be supported on vCE.
- It is important to ensure seamless end-to-end SLA from IP VPN in the WAN into service network/Data center.

Management plane

- Network abstraction and management
 - vCE North bound interface SHOULD be standards based.
 - vCE element management MUST be supported, it can be in the similar fashion as for physical CE, without the hardware aspects.
- Service VM Management
 - Service VM Management SHOULD be hypervisor agnostic, e.g.
 On demand service VMs turning-up should be supported.
 - The management tool SHOULD be open standards.

Orchestration

DC Instance to WAN IP VPN instance "binding" Requirements

- MUST support service activation in the physical and virtual environment, assign VLAN to correct VRF.
- MUST support per VLAN Authentication, Authorization, and Accounting (AAA).
- MUST be able to apply other policies to VLAN. e.g., per VLAN QOS, ACLs.
- MUST ensure that WAN IP VPN state and Data Center state are dynamically synchronized.
- Ensure that there is no possibility of customer being connected to the wrong VRF.
- MUST integrate with existing WAN IP VPN provisioning processes.
- MUST scale to at least 10,000 tenant service instances.
- MUST cope with rapid tenant mobility.
- MAY support Automated cross provisioning accounting correlation between WAN IP VPN and cloud/DC for the same tenant.
- MAY support Automated cross provisioning state correlation between WAN IP VPN and cloud/DC/extended Data Center for the same tenant.

vCE Push

- Process
 - DC orchestration configures vCE
 - Orchestration initiates WAN provisioning; passes VLAN / VXLAN + tenant context
 - WAN provisioning system provisions PE VRF+ other policies as per normal
- DC Orch or WAN provisioning needs to know the topology connecting the DC and WAN, i.e. which int on core switch connects to which int on DC PE
- Requires offline state correlation
- Requires offline accounting correlation
- Requires per SP integration

vCE Pull

- Process
 - 1. DC orchestration configures vCE
 - Orchestration primes NGN provisioning/ AAA for new service, i.e. passes VLAN / VXLAN + tenant context
 - 3. DC PE detects new VLAN; Radius Access-Request
 - 4. Radius Access-Accept with VRF + other policies
- Requires VLAN/VLAN: Tenant context to passed on a per transaction basis
 - In practise may just be DC orch updating LDAP directory
- Auto state correlation
- Auto accounting correlation

Next Steps

- Address all comments on the list, in the meeting, and off-line discussions.
- Submit a new version
- Ask the WG to check interest for adopting this work as WG item