LMAP BoF
1. ISP use case
2. Framework

Philip Eardley
BT
13 March 2013
ISP use case

• Identifying, isolating and fixing problems in the network
 – Assist Test and Diagnostics tools
 – Identify degradations as well as failures
 – Identify issues affecting a group of customers (shared network element, equipment type, etc)
 – Test network segments, as well as access line
 – Scheduled and ad hoc tests needed

• Design and planning
 – To assist capacity planning & monitor suppliers

• Understanding the impact and operation of new devices, technology, products and services
 – IPv6, CGNAT, IPTV, new line cards...

• Understanding the quality experienced by customers
 – End-to-end service experience
LMAP characteristics from ISP use case

- **Large-scale**
 - Capable of running tests on individual lines (panel is not enough)
 - Potentially Measurement Agent in every edge and end device
- **Standardised**
 - Meaningful to compare measurements of same metric
 - Allow operators to use multiple vendors for Measurement Agents
- **Diversity**
 - Measurement Agents in different devices (home hubs, set top boxes, edge devices), from different vendors, with different capabilities (wired, wireless)
- **On-demand tests**
 - By operator and by end user
- **Measurement Agents**
 - Perform the test
- **Controller**
 - Manages MA (instructs what test to do & when; how to report results)
- **Collector**
 - Accepts results from MA
Overall measurement framework

- LMAP should be open about what metrics are measured
 - Use IPPM tests, referenced via the proposed IPPM registry
Overall measurement framework

- LMAP should be open about use of measurement results
 - After collection: used by ISP, regulator...
Technical gaps (work for LMAP)

• Define how the Controller instructs an MA about a test (Test /Report Schedule)
 – What metric to measure (with what parameters), when, what conditions, how to report (where to and when).

• Define how the MA reports results to the Collector (Report)
 – What was measured, when, the actual results

... which requires ...

• Information model: abstract definition of Test /Report Schedule and of Report
 – We want exactly one

• Data model: instantiates the information model in a particular language.
 – Eg JSON or YANG or (for the Report) IPFIX. Or non-IETF standard like XML.

 – Eg NETCONF or a RESTful interface or (for the Report) IPFIX. Or a non-IETF protocol, like TR-69
 – Reflect diversity of types of Measurement Agent
Solution Constraints

• To help meet the required characteristics
 – especially large-scale
• To simplify initial work whilst allowing future extensions
Constraint #1: Measurement system under control of one organisation

• Single organisation responsible for both data and user experience
• Inter-organisation coordination is not precluded
 – Interesting but raises additional issues (policy etc)
Constraint #2: Measurement Agent has a single Controller at any one moment

- Single Controller determines MA’s Schedule
 - So MA does not have to manage contention between multiple, conflicting Schedules
 - Simplifies MA design and deployment
- Note, an operator may have several Controllers
 - For different device types, scalability, resilience etc
Constraint #3: Measurement Agent acts autonomously

- MA operates tests and reports results without further reference to Controller (once it gets Schedule)
 - Avoids frequent checks with Controller
 - MA (on edge /end device) knows when not to run test due to user activity