LDP Bindings Refresh
(draft-pelletier-mpls-ldp-bindings-refresh-02)

André Pelletier

Kamran Raza

(Cisco Systems, Inc.)
Problem

* There are situations when there is a need for performing consistency checks and state refresh for LDP binding state (address/label bindings) exchanged between LDP speakers.

* For instance, a state refresh may be required to detect and purge stale bindings received by an LDP speaker, which have resulted from an in-service software upgrade.

* With introduction of high availability features such as NSR, it is possible to preserve the TCP session across in-service-software-upgrades, hardware failovers, or process crashes.

* When such an HA event occurs (i.e. without flapping the TCP session), an LSR can re-advertise all local state to the peers (optimizations possible)
Problem (cont’d)

* Full re-advertisement of all state after an HA event does not remove any stale bindings being held by the peer LSR

* If an LSR loses track of a piece of advertised/withdrawn state when an HA event occurs, it is possible that a withdraw will never be sent
 * The receiver will be stuck holding this state indefinitely
 * This stale state can cause future harm, like an address mapping

* Tracking every piece of state to standby instance is complex:
 * Must be synchronized with respect to TCP stream
 * Compounded by various LDP applications (mLDP, AToM)
Solution: LDP Binding Refresh

* RFC5919 introduced “END-of-LIB” marker which can be used to signal completion of a replay

* When an HA event occurs and TCP session is preserved, it is possible to re-advertise all bindings, and signal END-of-LIB, but this won’t trigger a receiver to clear stale state

* This draft proposes a simple mark-and-sweep solution:
 1. START-MARKER
 2. Replay all state…
 3. END-MARKER
 * Stale state flushed by the receiver
Solution: LDP Binding Refresh (cont’d)

- The markers allow an LSR to PUSH a state refresh to a peer, thus triggering any stale state clearance.

- Any state which is not re-advertised between the markers must be assumed to be stale, and should be purged by the receiver.

- State = Label and Address Bindings

<table>
<thead>
<tr>
<th></th>
<th>Labels</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>START Marker</td>
<td>Start-of-LIB</td>
<td>Start-of-Addresses</td>
</tr>
<tr>
<td>END Marker</td>
<td>End-of-LIB (Existing RFC5919)</td>
<td>End-of-Addresses</td>
</tr>
</tbody>
</table>

- For receiver-driven refresh and consistency check, solicited requests of label and/or address binding is also allowed.
State Refresh Triggers

With the control messages defined in this draft, an LDP LSR can push and pull a full state refresh to correct inconsistencies due to:

* In-service software upgrades (ISSU)
* Protocol process failures and restarts
* Stateful switchovers
* Software defects

In addition, an end-user could also trigger a full state reconcile between LDP LSRs without flapping the TCP sessions.
Protocol Extensions

Capability:

* The draft introduces a "Bindings Refresh" capability to signal that an LSR supports the extensions described in the draft.

```
+-----+-----+-----+-----+
| 0   | 1   | 2   | 3   |
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| S | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

### Wildcard Address:

* Specified as an empty "Address List" TLV - i.e. the TLV containing only the Address-family identifier, with no addresses in it.

* When received in an address message, it must be treated as "All addresses" for the given Address-family type.
Protocol Extensions (cont’d)

* Markers:
  * Label START:
    * LDP Notification message with (a) Status TLV (“Start-of-LIB”), (b) FEC TLV (Typed Wildcard FEC element)
  * Label END:
    * No change, defined in RFC 5919 [End-of-LIB]
  * Address START:
    * LDP Notification message with (a) Status TLV (“Start-of-Addresses”), (b) AddressList TLV (“Wildcard Address”)
  * Address END:
    * Same as above
“Wildcard Address Request” message:

To make the state-refresh solution symmetric, this draft also introduces ability to request (PULL) a state refresh for addresses:

RFC5036 defines an wildcard label request but no address request

This draft defines a new "Wildcard Address Request" message to solicit/request all addresses from a peer. This message uses “Wildcard Address” (as defined earlier) in AddressList TLV
I-D Status

✩ Open Items:
  ✤ AToM/mLDP/ICCP application state reconcile?

✩ Next Steps:
  ✤ Seeking WG feedback
  ✤ Looking for WG adoption