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Measurement-based study supported by theory

focus on congestion control part of MPTCP [RFC 6356]
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« outline: 1. examples of performance issues
2. can these problems be fixed in practice?



LIA[RFC 6356]: "Linked Increases" Algorithm

 adhoc design based on 3 goals

1. improve throughput: total throughput > TCP over
best path

2. do not harm: not more aggressive than a TCP
over a path

3. balance congestion while meeting the first two
goals
» as also stated in RFC 6356, LIA does not fully
satisfy goal 3



MPTCP CAN PENALIZE USERS

R. Khalili, N. Gast, M. Popovic, J.-Y. Le Boudec, "Performance Issues with
MPTCP", draft-khalili-mptcp-performance-issues-02



Scenario A: MPTCP can penalize TCP users

N1 | | /—— Servers
Typel —-—————- high speed - —————- IN1.Cl|—-=]—-—- For typel
users connections | | \—— Users

router RZ”

N2 IN2.C2 | /—— Servers
Type2 —-—-———————- | |- | -—— For type 2
users router R1 \—— Users

 bottleneck for type 1 user is at the server side
 bottleneck for type 2 users Is at the access side



Scenario A: MPTCP can penalize TCP users
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 type 1 users upgrade to MPTCP users

« MPTCP transmits significant traffic over R1: no benefits for
type 1 users but hurts R2 users



Throughput of type 2 users reduced without any
benefit for type 1 users
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We compare MPTCP with two theoretical baselines

1. optimal algorithm (without probing cost):
theoretical optimal load balancing (keiy.voice 0s)

2. optimal algorithm with probing cost:
theoretical optimal load balancing including
minimal probing traffic

— using a windows-based algorithm, a min probing
traffic of 1 MSS/RTT is sent over each path



Part of problem is in nature of things, but
MPTCP seems to be far from optimal
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CAN THE SUBOPTIMALITY OF MPTCP
WITH LIA BE FIXED IN PRACTICE?

R. Khalili, N. Gast, M. Popovic, J.-Y. Le Boudec, "Opportunistic Linked-Increases
Congestion Control Algorithm for MPTCP", draft-khalili-mptcp-congestion-control-00



LIA’s design forces tradeoff between
responsiveness and congestion balancing

On/off flows

Long lived flows

provide congestion balancing be responsive
optimal congestion balacing LIA’s implementation respon_sive but _
but not responsive (RFC 6356) bad congestion balancing
< ,' I ; >
e=0 e=1 g=2

g IS a design parameter



OLIA: an algorithm inspired by utility
maximization framework

 simultaneously provides responsiveness and
congestion balancing

* an adjustment of optimal algorithm keiy.voice os]

— by adapting windows increases as a function of quality
of paths, we make it responsive and non-flappy

* Implemented on the MPTCP Linux kernel



Set of collected paths (collected paths)

* |.: smoothed estimation of number of bytes
transmitted between last two losses

* best_paths: set of paths with max (I *1 )/rtt,

— paths that are presumubly the bests for the MPTCP
connection (based on TCP loss-throughput formula)

* max_w_paths: set of path with max windows

* collected paths: set of paths in best_paths but not
In max_w_paths



OLIA: "Opportunistic Linked-Increases Algorithm"

For each pathr:
* Increase part: for each ACK onr, increase w, by

N

/ responsiveness; reacts to
optimal congestion balancing: changes in current windows
adaptation of [kelly, voice 05]

* decrease part: each loss on r, decreases w, by w,/2
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OLIA reforwards traffic from fully used
paths to paths that have free capacity

o (t) 1s calculated as follows:
 Ifrisin collected paths, then

1/number of paths

|collected paths|

* Ifrisinmax _w_paths and if collected paths is

not empty
1/number of paths

o, (t) = - ——-———--——-=- -

lmax w paths|

» otherwise, a, = 0.



Scenario A: OLIA performs close to
optimal algorithm with probing cost
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Summary

MPTCP with LIA suffers from important
performance problems

these problems can be mitigated in practice

OLIA outperforms LIA in all scenarios we
studied [CoNEXT 12]

suggestion: congestion control part of MPTCP
should be revisited by the IETF committees
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Theoretical results: OLIA solves problems
with LIA

using a fluid model of OLIA

Theorem: OLIA satisfies design goals of LIA
(RFC 6356)

Theorem: OLIA is Pareto optimal

Theorem: when all paths of a user have similar
RTTs, OLIA provides optimal load balancing



An illustrative example of OLIA" s behavior
symmetric scenario
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MPTCP with LIA

OLIA uses both paths; it is non-flappy and responsive



An illustrative example of OLIA’ s behavior
asymmetric scenario
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OLIA uses only the first one; it balances the congestion

22



Static fat-tree topology: OLIA explores
path diversity and show no flappiness
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a data center with fat-tree topology (similarly to what
studied at [MPTCP-Sigcomm 2011])
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Highly dynamic setting with short flows
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4.1 oversubscribed fat-tree; 1/3 of flows are long flows
and 2/3 are short flows (similarly to [MPTCP-Sigcomm 2011])
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