
Macro Trends, Complexity, and
Software Defined Networking:
An Architectural Perspective

David Meyer

CTO and Chief Scientist, Brocade

Director, Advanced Technology Center, University of Oregon

Network Complexity Research Group (IETF 86)

March 2013

dmm@{brocade.com,uoregon.edu,1-4-5.net,…}

http://www.1-4-5.net/~dmm/talks/nrcg86.pdf

mailto:dmm@brocade.com
mailto:dmm@uoregon.edu
mailto:dmm@1-4-5.net
mailto:dmm@1-4-5.net
mailto:dmm@1-4-5.net
mailto:dmm@1-4-5.net
mailto:dmm@1-4-5.net
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf
http://www.1-4-5.net/~dmm/talks/apricot2013.pdf

Agenda

• SDN Problem Space and Hypothesis

• (Macro) Trends Inducing an New Landscape

• The Past: How We Got Here

• The Present: What Exactly is the Current State of Affairs?

• The Future: Where’s it All Going

• Summary and Q&A if we have time

Danger Will Robinson!!!

This talk is intended to be controversial/provocative
 (and a bit “sciencey”)

What I Hope To Achieve

I hope to convince you that uncertainty and
volatility are the “coin of the realm” of the
future, why this is the case, how SDN (and
the rise of software in general) is accelerating
this effect, and finally, what we might do
to take advantage of it.1

1 s/take advantage of/survive/ -- @smd

So What Then is the SDN Problem Space?

• Network architects, engineers and operators are being presented with the following
challenge:

– Provide state of the art network infrastructure and services while minimizing TCO

• SDN Hypothesis: It is the lack of ability to innovate in the underlying network coupled
with the lack of proper network abstractions results in the inability to keep pace with
user requirements and to keep TCO under control.
– Requirements stated informally, out of band, statically, …

– Better done by machine (programmatic automation of config, monitoring, management, …)

– For the most part true, but do we need to change the network architecture to solve this?

– Hold that question…

• Note future uncertain: Can’t “skate to where the puck is going to be” because curve is

unknowable (this is a consequence, as we will see, of the “software world” coupled
with Moore’s law and open-loop control).
– That is, there is quite a bit of new research that suggests that such uncertainty is inevitable

• So given this hypothesis, what was the problem?

Maybe this is the problem?

Or This?

Many protocols, many touch points, few open interfaces or abstractions,..
Network is Fragile, but is that the problem? BTW, what is fragility/robustness?

Robustness vs. Complexity
Systems View

Increasing number of policies, protocols, configurations and interactions

Domain of the fragile

Domain of the Robust

Can we characterize the Robust and the Fragile?

Robustness and Fragility

• Definition: A [property] of a [system] is robust if it is [invariant] with respect to a [set
of perturbations], up to some limit

• Fragility is the opposite of robustness

– If you're fragile you depend on 2nd order effects (acceleration)

– A bit more on this in a sec…

• A system can have a property that is robust to one set of perturbations and yet
fragile for a different property and/or perturbation  the system is Robust Yet
Fragile (RYF-complex) [0]
– Or the system may collapse if it experiences perturbations above a certain threshold (K-fragile)

• Example: A possible RYF tradeoff is that a system with high efficiency (i.e., using
minimal system resources) might be unreliable (i.e., fragile to component failure) or
hard to evolve

[0] http://www.istar.upenn.edu/osw/white paper/John Doyle White Paper.pdf

http://www.istar.upenn.edu/osw/white paper/John Doyle White Paper.pdf
http://www.istar.upenn.edu/osw/white paper/John Doyle White Paper.pdf
http://www.istar.upenn.edu/osw/white paper/John Doyle White Paper.pdf

RYF?

RYF Tradeoffs

RYF Tradeoffs -- Another View

System Properties as Robustness

• Reliability is robustness to component failures

• Efficiency is robustness to resource scarcity

• Scalability is robustness to changes to the size and
complexity of the system as a whole

• Modularity is robustness to structure component
rearrangements

• Evolvability is robustness of lineages to changes on
long time scales

Fragility and Scaling
 (geeking out for a sec…)

• A bit of a formal description of fragility
– Let z be some stress level, p some property, and

– Let H(p,z) be the (negative valued) harm function

– Then for the fragile the following must hold

• H(p,nz) < nH(p,z) for 0 < nz < K

• K is the level at which the system collapses (K-fragility)

• This inequality is importantly not mean preserving (Jensen’s Inequality)

• Not mean preserving: H(p,(z1 + z2)/2) != (H(p,z1) + H(p,z2))/2

–  model error and hence additional uncertainty

• For example, a coffee cup on a table suffers non-linearly more from large deviations
(H(p, nz)) than from the cumulative effect of smaller events (nH(p,z))
– So the cup is damaged far more from (i.e., destroyed by) tail events than those within a few σ of the mean

– Too theoretical? Perhaps, but consider: ARP storms, micro-loops, congestion collapse, AS 7007, …

– BTW, nature requires this property

– For example, if you jump off something 1 foot high 30 times v/s jumping off something 30 feet high once

• When we say something scales like O(n2), what we mean is the damage to the network
has constant acceleration (2) for weird enough n (i.e., outside say, 10 σ)
– That is, you suffer non-linear harm from tail events

What Does The Fragility Curve Look Like?
Non-linear exposure to harmful event  Concavity

Graphic courtesy [Taleb2007]

What Is Antifragility?

• Antifragility is not the opposite of fragility
– Robustness is the opposite of fragility

– Antifragile systems improve as a result of [perturbation]

• Metaphors
– Fragile: Sword of Damocles

• Upper bound: No damage
• Lower bound: Completely destroyed
• The cumulative effect of small perturbations is smaller than the single effect

of a large perturbation – dependence on second order effects

– Robust: Phoenix
• Upper bound == lower bound == no damage

– Antifragile: Hydra
• Lower bound: Robust
• Upper bound: Becomes better as a result of perturbations (within bounds)

• More detail on this later (if we have time)

So What Then is Complexity?

“In our view, however, complexity is most
succinctly discussed in terms of functionality
and its robustness. Specifically, we argue that
complexity in highly organized systems arises
primarily from design strategies intended to
create robustness to uncertainty in their
environments and component parts.”
[AldersonDoyle2010]

Back to Macro Trends

The Evolution of Intelligence
Precambrian (Reptilian) Brain to Neocortex  Hardware to Software

SOFTWARE HARDWARE

• Architectural Themes
• Thin-waist architectures (more on this in a sec)
• Massively distributed
• Highly layered with Robust Control loops
• Component Reuse
• RYF-complex

Its all about code
Consider: Strong v/s weak Emergence

And BTW, while we’re talking about evolution, the Punctuated
Equilibrium model of evolution [Gould & Eldredge1977]
depends on the existence of just the kind of tail events I
described earlier.

Thin Waists 101: The Bowtie Architecture
Ideas from Systems Biology

 Constraints that Deconstrain

For example, the reactions and metabolites of core
metabolism, e.g., ATP metabolism, Krebs/Citric Acid
cycle signaling networks, …

See, e.g., Doyle, et. al., “Architecture, Constraints, and Behavior”,
http://www.pnas.org/content/108/suppl.3/15624.full

But Wait a Second
Anything Look Familiar?

Hourglass Architecture

Bowtie Architecture

Transcription/
translation

Microtubules
Neurogenesis
Angiogenesis

Immune/pathogen
Chemotaxis

TCP
….

Regulatory
feedback

control

BTW, there’s
an apparent

paradox

Component behavior gratuitously
uncertain, yet systems have robust
performance.

Mutation

Selection

Darwinian evolution uses selection on
random mutations to create complexity.

Network folks use what, exactly?

BTW, Where Does OF/SDN Fit?

Maybe here?

If so, what does this
say (architecturally)
about OF/SDN?

Everything De-silos

Vertical -> Horizontal Integration
Open {APIs, Protocols, Source}
Everything Pluggable
Future is about Ecosystems

Network Centric  IT Centric

• Shift in influence and speed

• Shift in locus of purchasing influence

• Changes in cost structures
– ETSI NfV, ATIS, IETF, …

• NetOPs  DevOPs

Other Important Macro Trends

• Everything Virtualizes
– Well, we’ve seen this

• Data Center new “center” of the universe

– Looks like ~ 40% of all traffic is currently sourced/sinked in a DC
– Dominant service delivery point

• Integrated orchestration of almost everything

• Bottom Line: Increasing influence of software *everywhere*

– All integrated with our compute, storage, identities, …
– Increasing compute, storage, and network “power”  increasing

volatility/uncertainty

The Past: Ok, How Did We Get Here?

Basically, everything networking was too vertically integrated, tightly coupled, non-standard.

Goes without saying that this made the job of the network researcher almost impossible.

Question: What is the relationship between the job of the network researcher and
the task of fielding of a production network?

(in)SANE

Slide courtesy Martin Cassado

Salient features: Open interface to Data Plane, separation of control and data planes

So What was Ethane?

Ethane: Addressing the Protection Problem in

Enterprise Networks

Martin Casado
Michael Freedman
Glen Gibb
Lew Glendenning
Dan Boneh
Nick McKeown
Scott Shenker
Gregory Watson

Presented By: Martin Casado
PhD Student in Computer Science,
Stanford University

casado@cs.stanford.edu
http://www.stanford.edu/~casado

A Little Later…OpenFlow
(Gates 104 Crew)

Switch Model

OpenFlow Switch, v 1.0

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline

+ mask

Packet + byte counters

Flow Table

Again, salient features: Open interface to the Data Plane, separation of control and
data planes, “centralized” control  Great for researchers, but what about production networks?

And BTW, is this (architecturally) the same as the breaking down of vertical integration in the compute world?

Graphic courtesy James Hamilton,
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_POA20101026_External.pdf

Note that the architecture didn’t change

App

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

App

App

Simple Packet
Forwarding
Hardware

Simple Packet
Forwarding
Hardware

OpenFlow Controller

Early OF/SDN Architecture

33

Control
plane

Data
plane

OpenFlow Protocol

App App

Graphic courtesy Nick Mckeown

• Separation of Control and Data Planes
• Open Interface to Data Plane
• Centralized Control (?)

“NB API”

Logically Centralized?

Graphic courtesy Levin, D., et. al., “Logically Centralized? State Distribution Trade-offs in Software Defined Networks?”,
HotSDN 2012, http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p1.pdf

Key Observation: Logically centralized  distributed system  tradeoffs between
control plane convergence and state consistency model. And what about the loss of
control plane/data plane fate sharing?

BTW, Nothing New Under The Sun…

• Separation of control and data planes is not a new idea. Examples include:

– SS7

– Ipsilon Flow Switching
• Centralized flow based control, ATM link layer
• GSMP (RFC 3292)

– AT&T SDN
• Centralized control and provisioning of SDH/TDM networks

– A similar thing happened in TDM voice to VOIP transition
• Softswitch  Controller
• Media gateway  Switch
• H.248  Device interface
• Note 2nd order effect: This was really about circuit2packet

– ForCES
• Separation of control and data planes
• RFC 3746 (and many others)

– …

OpenFlow Switch Model Version 1.0

Drop

Flow Table
(TCAM)

Redirect to Controller

Forward with
 edits

Packet

Apply actions

Encapsulate packet to controller

Too simple:
- Feature/functionality
- Expressiveness – consider shared table learning/forwarding bridge

The Present: Current (ONF) SOA
OpenFlow Switch Specificat ion Version 1.1.0 Implemented

Table

0

Table

1

Table

n

Packet Execute

Action
Set

Packet
In

Action

SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress

port

Packet +

ingress port +

metadata

Action

Set

(a) Packets are matched against mult iple tables in the pipeline

Match fields:
Ingress port +

metadata +

pkt hdrs

Action set

Flow
Table

 Find highest- priority matching fl ow entry

 Apply instruct ions:
 i. Modify packet & update match fi elds

 (apply actions instruction)

 ii. Update action set (clear actions and/ or

 write actions instructions)

 iii. Update metadata

 Send match data and action set to

 next table

Action set

Match fields:
Ingress port +

metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline

The flow tables of an OpenFlow switch are sequent ially numbered, start ing at 0. Pipeline processing

always starts at the first flow table: the packet is first matched against ent ries of flow table 0. Other flow

tables may be used depending on the outcome of the match in the first table.

If the packet matches a flow ent ry in a flow table, the corresponding inst ruct ion set is executed (see

4.4). The inst ruct ions in the flow entry may explicit ly direct the packet to another flow table (using the

Goto Inst ruct ion, see 4.6), where the same process is repeated again. A flow ent ry can only direct a packet

to a flow table number which is greater than its own flow table number, in other words pipeline processing

can only go forward and not backward. Obviously, the flow entries of the last table of the pipeline can

not include the Goto inst ruct ion. If the matching flow entry does not direct packets to another flow table,

pipeline processing stops at this table. When pipeline processing stops, the packet is processed with its

associated act ion set and usually forwarded (see 4.7).

If the packet does not match a flow entry in a flow table, this is a table miss. The behavior on ta-

ble miss depends on the table configurat ion; the default is to send packets to the cont roller over the control

channel via a packet -in message (see 5.1.2), another opt ions is to drop the packet . A table can also specify

that on a table miss the packet processing should cont inue; in this case the packet is processed by the next

sequent ially numbered table.

6

• Why this design? Combinatorics…
• Consider complexity: ~ O(n! * a(2^l)) paths

• n = number of tables, a = number of actions, l = width of match fields

• Too Complex:
• What is a flow?
• Not naturally implementable on ASIC h/w
• Breaks new reasoning systems
• No fixes for the lossy abstractions
• Architectural questions

Emerging:
- SDN Continuum
- IETF, ETSI, ATIS, …

So question: Is the flow-based
abstraction “right” for general
network programmability?

DP/SDN
Properties:
-- Complete Separation of CP and DP
-- Open Interface/programmable Data Plane
-- Examples: OF, ForCES, various control platforms
-- Initially: Applications program the network

OL/SDN
Properties:
-- Retains existing (simplified) Control Planes
-- Programmable overlay control plane
-- Examples: Various Overlay technologies
-- May use OF to program flows in vSwitch

CP/SDN
Properties:
-- Retains existing (distributed) Control Planes
-- Programmable control plane
-- Network aware applications
 Explicitly *not* e.g., learning switch
-- Examples: PCE, I2RS, vendor SDKs

Physical and Virtual Resources
(CSN)

Control and Orchestration
 (overly simplified view)

Apps Apps …

Service Layers

A Simplified View of the SDN Continuum

May be repeated
(stacked or recursive)

So The Future: Where’s it All Going?

But More Seriously….

• High order bit:
– System(s) we’re building are inherently uncertain  cloudy crystal balls
– Architect for change and rapid evolution – see XP/Agile methodologies for a clue
– Increasing roles for s/w and programmability + Moore’s law  volatility/uncertainty
– Lucky thing for many of us: we work primarily around the narrow waist, most stable place to be
– “Above the waist” characterized by uncertainty, e.g., http://spotcloud.com/

• Conventional Technology Curves – S & F

– Moore’s Law and the reptilian brain
• Someone eventually has to forward packets on the wire

– 400G and 1T in the “near” term
– Silicon photonics, denser core count, ….

• The future is all about Ecosystems

– Open Interfaces: Protocols, APIs, Code, Tool Chains
– Open Control Platforms at every level
– “Best of Breed” markets
– And again, more volatility/uncertainty injected into system as a whole

• BTW, open source/open source consortia dominate

– And what is the role of standards bodies in the age of Open Source?

• So what might such an ecosystem/platform look like?

http://spotcloud.com/

Ecosystem Platform Schematic

Real Time
Programmatic Interfaces

Plugin Framework (e.g., OSGi)

Analytics
Engine (s)

Resource
Brokers

Orchestration

Policy Engines

OSS
System(s)

BSS
System(s)

Applications
WebRTC, …

Services
Platform

Network Abstraction
Core Functionality
Services Engines
Plugin Management
…

IP/MPLS NPS

Multi-Layer
OpenFlow
Controller

Classify/Forward

Other
Standards

Openflow

BGP-LS
PCE
GenApp
ALTO
IP-FIX
XMPP
I2RS
Config

P
R

O
G

R
A

M
M

A
TIC

 C
O

N
TR

O
L

R
EA

LTIM
E N

ETW
O

R
K

 A
N

A
LY

TIC
S

plugin plugin

Edge Core Mobile CPE

Interface Interface Interface Interface

Fabric

Interface

vRouter

Interface

Plugin Architecture

Stack View

Virtual and Physical Forwarding Resources, Compute and Storage

Overlays, VPNS, Network Slicing

APIs, Plugins, and Protocols

Distributed Routing and Peering

SP, Campus, and Data Center Orchestration

APIs, Plugins, and Protocols

Cloud/Tenant Orchestration, Services, Management

APIs, Plugins, and Protocols

Services Layer (GOTOM, IM/Presence, Video, Mobility, …)

.

.

.

R
ec

u
rs

iv
e

Summary – What are our Options1

• Be conservative with the narrow waist -- constraints that deconstrain

– We’re pretty good at this

– Reuse parts where possible (we’re also pretty good at this; traceroute a canonical example)

• Expect uncertainty and volatility from above

– Inherent in software, and importantly, in acceleration

• We know the network is RYF-complex so we know that for H(p,x), the “harm” function, d2H(p,x)/dx2 ≠ 0

• When you architect for robustness, understand what fragilities have been created

–  Software (SDN or http://spotcloud.com or …) is inherently non-linear, volatility, and uncertain

• We need to learn to live with/benefit from the non-linear, random, uncertain

• DevOps

• Develop our understanding bottom up (by “tinkering”)

– Actually an “Internet principle”. We learn incrementally…

– Avoid the top-down (in epistemology, science, engineering,…)

– Bottom-up v. top-down innovation cycles – cf Curtis Carlson

• Design future software ecosystems to benefit from variability and uncertainty rather than trying to
engineer it out (as shielding these systems from the random may actually cause harm)

– For example, design in degeneracy -- i.e., “ability of structurally different elements of a system to perform the same
function”. In other words, design in partial functional overlap of elements capable of non-rigid, flexible and versatile
functionality. This allows for evolution *plus* redundancy. Contrast m:n redundancy (i.e., we do just the opposite).

1 No pun intended

http://spotcloud.com
http://spotcloud.com

Q&A

Thanks!

