
 1

YANG-API Implementation
Observations

draft-bierman-netconf-yang-api-01
IETF 86, March 2013

Andy Bierman
March 12, 2013

 2

Agenda

● Implementation Summary
● Implementation and Compatibility Issues

 3

Implementation Summary

netconf
subsystem

Apache2

OpenSSH

netconfd-pro

FastCGI
thin client Local Socket

STDIN and STDOUT

NETCONF

YANG-API

draft-bierman-netconf-yang-api-01.txt
draft-lhotka-netmod-yang-json-00.txt

 4

Features Implemented

● All methods implemented (OPTIONS, HEAD, GET,
POST, PUT, PATCH, DELETE)

● All query parameters implemented (config, depth, format,
insert, point, select)

● Most HTTP headers implemented

● All error handling implemented (<errors> and HTTP Status)

● All /yang-api fields (modules, datastore, operations, version)

● All server NETCONF operations are available in YANG-API

● draft-lhotka-netmod-yang-json-00 for JSON encoding

 5

Features Not Yet Implemented

● JSON support

– JSON message body input

– JSON output of POST (<get> or <get-config>)

– depth parameter support
● Accept header

– strong media typing not used yet
● Range, Content-Range headers

● optional-key YANG extension

 6

Variations

● Resource definition changed so every node is a
considered a resource

● Depth parameter changed to default=2 and applies to all
child nodes the same

● Select parameter implemented as XPath expression,
using the target resource node(s) as the document root

● Operations on a leaf-list do not require a message body
since the value is in the resource URI

● Added a <data> wrapper to prevent invalid XML from
being returned for GET operations on data resources

 7

New Parameter 'test'

● Contains an XPath expression treated as a boolean

– document root = running config root

– context node = target resource node(s)
● Used with or without the ”select” parameter for

”needle-in-a-haystack” filtering (works like XSLT)

● GET /yang-api/datastore/interfaces/interface?
test=type='fast-ethernet'&select=name|counters&

 config=false

– get the name and counters for all fast-ethernet
interfaces

 8

Issues

● Resource vs. <config> subtree operations
● JSON vs. XML encoding issues
● Simplified transaction model
● Entity tags and last modified timestamps
● Pre-condition Issues

 9

Resource Based Operations

● Pros:
– Server can set config=false and with-

defaults=report-all from the resource URI

– Message body often not required, simplifying API
usage

– More efficient encoding than XML sub-tree

● Cons:
– Can only access one resource subtree at a time

 10

Comparing Message Sizes

● JSON vs. XML
– Comparing just message body chunked encoding

length; no indentation or newlines

 Data Resource XML JSON % diff

 /netconf-state 14658 9089 -38%

 /interfaces?config=false 1129 600 -47%

 /?config=false (root) 24338 15807 -35%

 11

JSON vs. XML Issues

● Pros:
– Smaller message encoding size

● Cons:
– Streaming output implementation of JSON can be

complicated because of context-specific
encodings (array, object, comma, null)

● Compatibility Issues:
– Attributes cannot be encoded

– <data> container may be needed in XML but not
JSON; added to JSON anyway

 12

Simplified Editing Model

lock
C edit-config commit

unlock
S

Target=candidate: 2 - 9 NETCONF vs 1 YANG-API requests

Target=running: 1 - 6 NETCONF vs 1 YANG-API requests

edit-config copy-config
R to S

copy-config
R to S

lock
R

lock
S

unlock
C

unlock
R

lock
R

lock
S

unlock
S

unlock
R

● Same transaction model for all servers

● Simple editing requires only 1 request

● Implicit locking allows any locking implementation

 13

Entity Tags

● ETag header:
– Supported for every <running> config data node

– Implementation up to the server (opaque string)

– Returned for the config=true target resource in
non-error responses

– If-Match and If-None-Match unmet preconditions
will cause an <error> with ”412 Precondition
Failed” status for edit operations

– If-Match and If-None-Match unmet preconditions
will cause a ”304 Not Modified” status for
retrieval operations

 14

Timestamps

● Last-Modified header:
– Supported for every <running> config data node

– Returned for the config=true target resource in
non-error responses

– If-Modified-Since and If-Unmodified-Since unmet
preconditions will cause an <error> with ”412
Precondition Failed” status for edit operations

– If-Modified-Since and If-Unmodified-Since unmet
preconditions will cause a ”304 Not Modified”
status for retrieval operations

 15

Pre-Condition Issues

● Whole Resource vs. Filtered Resource
– HTTP procedures say to return the entire requested resource if

pre-conditions pass (and 304 Not Modified not returned)

– Is it more efficient for data resources to return only the
descendant data resources instead of all of them?

– E.g: Return node /a/b for If-Modified-Since time 2 on /a

1

1 1

Target Resource: .a Edit 1 Target Resource: /a/c Edit 2

2

1 2

a

b c

a

b c

 16

Pre-condition Failed Error

● 412 Precondition Failed:
– Supposed to only return 412 if the there would not

be any errors returned

– Used in editing with If-Match, If-None-Match, If-
Modified-Since and If-Unmodified-Since headers

– Cannot really implement this requirement because
the commit can fail and if done for real then
undone the device and the network could be
adversely affected

– Implement all paramater checking, then a full
<validate> and return 412 if no errors so far

 17

Compatibility Issues

● PATCH operation

– not sure all tools support it (e.g., Poster does not but
Postman does)

● Browsers cache replies using LastModified and ETag

– Will send If-UnmodifiedSince and If-None-Match
because bot LastModified and ETag previously sent

– Causes server to persist both attributes for each node
if stability across reboots is desired

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

