Experience of Designing a
Network Management System

Yasuhiro TERAMOTO

Kyoto University

Y. ATARASHI
AlaxalA Networks
R. ATARASHI
llJ Innovation Institute
Yasuo OKABE
Kyoto University



Motivation and Goals

* This presentation describes our experiences
of desighing a network management system

— Mainly using the NETCONF protocol for
configuring
* Feedback of the experience to the WG
— Issues of the NETCONF protocol



Background

We used the NETCONF protocol to manage configurations of
multiple networking equipment by a central server

The server compiles policy into the configuration using resource
database and set/edit the configuration via NETCONF

The server aggregate events (now using SNMP, in future NETCONF)

Policy I Management Server Resource Database
- Routing E a Login Information
-VLAhlAngn mﬂmlmﬁﬂ - T |
- R 1NN opology
, / 1 \ \ L.C)EJSS
NETCONF,” \

1

. ,/ Ga herEvents (SNMP)
generate configs . /

!

1
]
)
)
1
: ’ ! \
and automatlcallxr I \ ~
> \
\

set ConfigA | ConfigB \

IRy
3 R

L f

I

1

I

35
1 “mgggg 9

Switches S
S

(Existing) Network System



Topics of NETCONF experiences

 The main topic of this presentation

— Transport layer
* SSH
 SOAP/HTTP
e Error handling

— Capability exchange
e Error handling



NETCONF transport protocol

* We implemented SSH and SOAP(experimental)
transport (using Java and Scala)

 The SSH protocol is complicated and hard to ensure
performance
— One SSH session per one device (if keeping session)

— Negotiation takes time
— The SSH protocol has no way to notify transport error

Protocol Our Implementation | Transport Transport Error
(using libraries) Notification

SSH 1000 lines Framing No mechanism

SOAP/HTTP <100 lines HTTP 400 Bad Request

messaging Response




Capabilities Exchange

* The peer terminates
the session without
notification on
receiving invalid hello

* Difficult to determine L Ne ~
R vali
the reason of 'Scof‘,r‘,ﬁif’@}
disconnection T

— No error notification l send rpc

Client Server

exchange capabilities

— Client may send <rpc>
before disconnection



Conclusion

* The SSH protocol is too complicated for
mandatory transport protoco

— The core protocol itself should be as simple as
possible

* Notification errors on capability exchange



Appendix: Data Model

* Current approach of data model is device oriented
— Models become complex to fit one model into various kinds of devices

 We are expecting result models to be in a reasonable compromise

Policy

Transform Policy

Our System linto Abstract Model

Routing User Account
VLAN Model Model Model
Transform Abstract Models
into Configuration
v v 4
ConfigA ConfigB ConfigC
(ModelA) (ModelB) (ModelC)
m%gggg % m@%ggg % b%%%%g B
Vendor A Vendor B Vendor C

Our current implementation of data modeling

Policy

\

VLAN Model Routing Model User Account
Model
Transform Policy
into Abstract Model directly
\ 4
VLAN Model Routing Model User Account
Model
Abstract Models
\J (] 3
%EE S g%g N g%g -
Ewg Eggggg gw% gg%ggg Ewg g%gggg
Vendor A Vendor B Vendor.C

Our expecting data modeling




—>

stopTime Freate subscription

Appendix: Notification Mechanism

* Notification capability [RFC5277]
— Large number of states and conditions

— Mandatory support of :interleave makes it simple

— More simple with start up notification

RPC

Yes: positive response

Notification

rpc

No : resource denied

interleave?

close session
(special case)

exit

current notification mechanism

RPC

create subscription

RPC /
Notification

interleave as mandatory

edit subscription

RPC /
Notification

-

notification on startup



