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Motivation and Goals

* This presentation describes our experiences
of desighing a network management system

— Mainly using the NETCONF protocol for
configuring
* Feedback of the experience to the WG
— Issues of the NETCONF protocol



Background

We used the NETCONF protocol to manage configurations of
multiple networking equipment by a central server

The server compiles policy into the configuration using resource
database and set/edit the configuration via NETCONF

The server aggregate events (now using SNMP, in future NETCONF)
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Topics of NETCONF experiences

 The main topic of this presentation

— Transport layer
* SSH
 SOAP/HTTP
e Error handling

— Capability exchange
e Error handling



NETCONF transport protocol

* We implemented SSH and SOAP(experimental)
transport (using Java and Scala)

 The SSH protocol is complicated and hard to ensure
performance
— One SSH session per one device (if keeping session)

— Negotiation takes time
— The SSH protocol has no way to notify transport error

Protocol Our Implementation | Transport Transport Error
(using libraries) Notification

SSH 1000 lines Framing No mechanism

SOAP/HTTP <100 lines HTTP 400 Bad Request

messaging Response




Capabilities Exchange

* The peer terminates
the session without
notification on
receiving invalid hello

* Difficult to determine L Ne ~
R vali
the reason of 'Scof‘,r‘,ﬁif’@}
disconnection T

— No error notification l send rpc

Client Server

exchange capabilities

— Client may send <rpc>
before disconnection



Conclusion

* The SSH protocol is too complicated for
mandatory transport protoco

— The core protocol itself should be as simple as
possible

* Notification errors on capability exchange



Appendix: Data Model

* Current approach of data model is device oriented
— Models become complex to fit one model into various kinds of devices

 We are expecting result models to be in a reasonable compromise
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Appendix: Notification Mechanism

* Notification capability [RFC5277]
— Large number of states and conditions

— Mandatory support of :interleave makes it simple

— More simple with start up notification
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