
Trond Myklebust 

<trond@netapp.com> 

NFSv4.1 dynamic 
slot allocation 

1 



What is dynamic slot allocation? 

 A tool for managing global session resources 

– Allows dynamic resizing of the replay cache on 

a per-client, per-load basis 

 The client communicates to the server whether 

or not it can fill all slots. 

 The server then decides how many slots it 

should allocate to that client in the future. 

 Communication occurs via the SEQUENCE 

operation, which means that updates occur on 

every COMPOUND. 

2 



Ordinary session management 

 Number of session slots negotiated at 

CREATE_SESSION time 

– ca_maxrequests sets the table size 

– Server pins sr_highest_slotid and 

sr_target_highest_slotid to ca_maxrequests-1 

– Server ignores the client settings of 

sa_highest_slotid 

 If the server runs out of resources, it can force 

renegotiation of the session by returning 

NFS4ERR_BADSESSION. 

3 



Dynamic session management 

 Initial session table size still negotiated at 

CREATE_SESSION time. 

– Session table size changes communicated 

using SEQUENCE: sr_highest_slotid and 

sr_target_highest_slotid reply fields 

– Server may adapt table size using its own 

policy criteria. E.g. client load, resource 

availability 

– Also a callback mechanism for out-of-band slot 

recalls. 

4 



How does the client communicate load? 

 The session slots are numbered from 0…n. 

 The client is required to allocate all slots from 

0…n-1, before it can use slot n. 

 In each SEQUENCE call, the client fills the 

sa_highest_slotid field to reflect the highest 

slot number in use at the time the 

SEQUENCE was sent. 

5 



How does the server reply? 

 The server fills the sr_highest_slotid with the 

highest slotid that the client is allowed to use. 

– This is the highest slotid for which the server is 

caching the sequence number. 

 It fills the sr_target_highest_slotid with the 

highest slotid that the client should use in the 

future. 

– IOW: as soon as the client sees this target, it 

should stop allocating new slotids > target. 

6 



Some notes 

 sr_target_highest_slotid <= sr_highest_slotid 

 Since dynamic slot allocation is not a 

mandatory feature (but a really useful one), 

then servers SHOULD ensure that for clients 

that don’t support dynamic slot allocation, 

sr_highest_slotid >= 

csr_fore_chan_attrs.ca_maxrequests-1 (see 

CREATE_SESSION). 

7 



Sounds easy. Where’s the catch? 

 Asynchronous nature of communication 

means that the client and server need to be 

careful when updating the values for 

sr_highest_slotid, sr_target_highest_slotid. 

– SEQUENCE requests/replies on different slots 

can be reordered w.r.t. each other. 

8 



How does reordering create problems? 

 Client sees incorrect limits: 

9 

T=10 

H=15 

H=5 

T=5 

H=10 

H=5 Client 

Server 
T=5 

H=5 

H=10 



How does reordering create problems? 

 Server sees incorrect client load: 

10 

T=7 

H=7 

H=5 

T=6 

H=6 

H=6 Client 

Server 
T=6 

H=6 

H=7 



When can sr_highest_slotid decrease? 

 After changing sr_target_highest_slotid. 

– Need to know that the client is not trying to 

replay any requests on those slots 

– Check sa_highest_slotid. 

 But what if it was reordered? 

11 



How does reordering create problems? 

 Server retires sr_highest_slotid too early: 

12 

T=7 

H=7 

H=6 

T=6 

H=6 

H=7 Client 

Server 
T=6 

H=6 

H=7(replay) 



When can sr_highest_slotid decrease? 

 After changing sr_target_highest_slotid. 

– Need to know that the client is not trying to 

replay any requests on those slots 

– Check sa_highest_slotid. 

 But what if it was reordered? 

 Solve reordering problem by checking 

sa_highest_slotid only on slots on which the 

new sr_target_highest_slotid have been sent. 

– Server needs to track value of 

sr_target_highest_slotid for each slot. 

13 



When can sr_highest_slotid decrease 

 Alternative server strategy is to only grow the 

window using sr_target_highest_slotid 

mechanism. 

– Use CB_RECALL_SLOT to tell the client to 

shrink the window 

– Problem is that only solves the reordering 

issues for server highest slotid limits. 

14 



Protocol nits… 

 RFC5661 does not say what happens to the 

sequence id for a “new” slot, when the server 

raises sr_highest_slotid. 

– Should it be initialised to ‘0’ on the server? 

 Reordering corner cases: client may fail to see 

slot being retired and then reinstated… 

 Alternative is to allow any initial value. 

– Need an errata… 

15 



Implementation: client 

 Linux 3.7 upstream NFSv4.1 client and newer 

implements dynamic slot allocation on the 

forward channel. 

– Supports CB_RECALL_SLOT 

– Client will generate extra SEQUENCE ops in 

order to satisfy lower target highest slotid. 

– Implements simple smoothing to avoid re-

ordering issues w.r.t. highest slotid and target. 

16 



Implementation: server 

 Server patches published and available for 

Linux 3.7, and 3.8. Not yet upstreamed. 

– Implements basic client-driven policy 

 grow the number of slots by ¼ when 

sa_highest_slotid >= sr_target_highest_slotid 

 Shrink slot table when sa_highest_slotid is 

decreasing 

– Global maximum number of slots. 

– Smoothing used to avoid sa_highest_slotid 

reordering issues. 

17 



18 


