A Unified Management Framework for autonomic and software-defined networks

IETF 86 – 29th NMRG meeting 14 March 2013, Orlando – FL, USA

OVERVIEW

MOTIVATIONS

UMF IN A NUTSHELL

UMF AND SDN

STANDARDIZATION OPPORTUNITIES

MOTIVATIONS

MOTIVATIONS PROBLEM STATEMENT

Simple facts/observations on today's networks:

- Increasing volume of traffic
- Increasing number of devices/interactions (e.g. Machine-to-Machine)
- Increasing number of services and related QoS constraints
- (still) technology heterogeneity and legacy
- (still) technology/administrative silos

Which generates the following problematic situation and detrimental impacts:

- o Complexity of distributed systems and their control/management
- Reaching the limit of current management/operation practices
 - scalability, speed, highly human-dependent
- Network capabilities under-utilization
 - worst-case/over provisioning, unused advanced features
- New service or application deployment difficulty
 - slow time-to-deploy and tedious multi-techno/vendor mapping

MOTIVATIONSGOAL

The ultimate goal of self-managing networks is to overcome these limits by providing intelligent, adaptive, modular, and automated carrier-grade control functions for seamless, end-to-end and cross-technology interworking

Objectives

- Multi-facet unification
 - Federation of existing architectures and unification management principles across multiple technologies
- Network empowerment
 - Embed intelligence to achieve true self-managing networks
- Industry readiness
 - Demonstrate deployability and develop migration strategies for adoption by telcos/vendors
- Trust and confidence
 - Demonstrate the reliability of every autonomic solution and develop standard testing and certification

In this context, standardization is a must!

MOTIVATIONS CHALLENGES

- o Genuine research challenges (still) exist to design and develop algorithms and mechanisms capable of replacing human operation | expertise | reasoning.
- An important and complex research challenge arises for the coordination of interactions among autonomic entities (conflict-resolution, stability assurance, multi-objective optimization)
- New solutions have to be extensively and rigorously tested and exercised on real use cases and field trials to prove their applicability in carrier-grade environments and build trust and confidence from the operators in their performance and safe behaviors.
- A unified framework is then needed to enable seamless, plug-and-play deployment and interoperable operations of the autonomic mechanisms. Designing this unified framework is a challenge in itself besides the required efforts for (pre-)standardization.

Most importantly, these four research challenges should be addressed concurrently which increases the difficulty of the task.

TOWARDS A REFERENCE FRAMEWORK

Solid, well-recognized understanding and knowledge of a specific domain, aiming at improving reuse of design expertise and productivity, facilitating the development of systems of that domain^[1]

NETWORK EMPOWERMENT MECHANISM

Approach: The right key to the lock

- Use the relevant method to solve a concrete operational problem in a specific networking environment
- Realize a purposeful self-management function (closed control loop)

NEM = method + objective + context

- Use of Bayesian inference for fault diagnosis in FTTH networks
- Use of Genetic algorithm for interference coordination in LTE networks
- Use of Self-organizing maps for Congestion Prediction in Core IP networks

NEM = abstraction of an autonomic function

- External interfaces (called "skin" in the UMF terminology)
- Description, properties, capabilities, behavior (called "manifest" in the UMF terminology)
- Enabling to capture also interactions and relationships with other NEMs
- Providing uniform model and control means

UMF IN A NUTSHELL COPING WITH DIVERSITY

Ecosystem diversity

Multiple heterogeneous NEMs

Multiple technology domains

Multiple roles per NEM

- NEMs interact
 - Intra-domain

✓ Explicitly | Implicitly

Inter-domain

✓ Explicitly | Implicitly

UMF IN A NUTSHELL UNIFICATION

Commonalities

- Common borders for a domain
- Same hierarchy
 - Reliable operation
 - Trustworthy interworking
 - Seamless deployment
- Same interfaces
 - o Policy
 - o Group communication
 - Sensing

Seamless deployment and trustworthy interworking of NEM army require:

- Tools for the operators to deploy, pilot, control and track progress of NEMs in a unified way
 - GOVERNANCE functional block
- Tools to identify/avoid conflicts and ensure stability and performance when several NEMs are concurrently working
 - COORDINATION functional block
- Tools to make NEMs find, formulate and share relevant information to enable or improve their operation
 - KNOWLEDGE functional block
- APIs to enable NEMs "plug and play" deployment, interoperability and monitoring/configuration
 - NEM Skin
 - Specific adaptors

Responsible for:

- The interaction between human operator and its network → express business goals report on critical states of self-managed operations/ devices
- Driving NEMs' behavior → policy-based framework for translating business-level, service specific goals/requests into low level, policies and configuration commands

GOVERNANCE ← → NEM:

- Commands to set NEM's status/mode (e.g. active, idle, stopped) and configure its operational parameters.
- Report on the NEM's operational conditions and configuration characteristics (e,g. performance indicators, capabilities/ behaviour, interaction with other NEMs).

Responsible for:

- Ensuring the proper sequence in triggering of NEMs and the conditions under which they will be invoked taking into account:
 - ✓ Operator and service requirements,
 - ✓ Needs for Conflict avoidance, joint optimization and stability control.

COORDINATION ←→ NEM:

- Commands to drive coordination including: tokens, timing, constraints, status (active/ idle), etc.
- Information on the NEMs operation including: parameters, metrics, scope, utility functions, etc.

Responsible for:

- Providing the suitable probabilistic models methods and mechanisms for derivation and exchange of Knowledge, based on :
 - ✓ Context and configuration information from NEMs,
 - ✓ Policies from Governance,
 - ✓ Information on NEM interactions from coordination

KNOWLEDGE ← → **NEM**:

- Commands to retrieve, share, derive and manage knowledge including: publish, subscribe, push, pull, request, store, notify ... messages.
- Registration of NEMs.

NEM LIFECYCLE

NEM Class (software)
described by MANIFEST (machine readable)

NEM Instance described by INSTANCE DESCRIPTION

Life-cycle:

Detail the states and transition of a NEM instance, from its being installed, to it running its MAPE autonomic loop.

Steps include all the management by the UMF core functional blocks.

UMF IN A NUTSHELL TIME SCALE

Different time scales, different events

UMF IN A NUTSHELL INFORMATION MODEL

UMF information model TMF SID-compliant

- o Provide formal UMF specification based on a standardized subsets of TMF SID
- o Ensure coherence between implemented classes generated from IM classes
- Used to model the exchanged data and the policy structure within the governance block
- Ease UMF integration in telcos IS environment

Design approach

- UMF concepts defined and mapped to SID
- New concepts added via SID patterns e.g. NEM information model

UMF IN A NUTSHELL SUMMARY

A unified framework to deploy and control self-managing functions

- Specifications of the UMF core functional blocks
- Specifications of the NEM
- UMF and NEM APIs (skin) and workflows/sequence charts
- Publicly available specifications, developer guidelines
- o Implemented, tested, modular and re-usable components
 - NEM skin
 - RESTful APIs

UMF AND SDN

UMF and SDN

UMF defines the necessary abstractions/APIs

- o for autonomic functions (NEMs)
- from the management point of view (UMF functional blocks)

SDN is essentially about abstractions and APIs

Complementarity where the abstractions will meet

Starting by identifying SDN management requirements and specificities

STANDARDIZATION OPPORTUNITIES

STANDARDIZATION OPPORTUNITIES

Architecture, features, use cases, measurements and requirements for SON mechanisms and coordination, O&M aspects and requirements, system architecture and service requirements for future mobile networks

QUESTIONS & ANSWERS

WWW.UNIVERSELF-PROJECT.EU

The research leading to these results has been performed within the UniverSelf project (www.univerself-project.eu) and received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 257513

PROJECT ID

- FP7 Call 5 Integrating Project
- **■** Total Cost: ~16M€; EC Contribution: ~10M€
- 16 Partners (3 Vendors, 4 Operators, 4 Research Institutes, 5 Universities)
- Coordinator: Alcatel-Lucent
- Duration: 36 months
- Start date: 01/09/2010
- Website: www.univerself-project.eu

CONSORTIUM

UNIVERSITY OF TWENTE.

BACKUP SLIDES

CAPABILITY LEVELS

0 - Reliable operation of a standalone NEM

- o 0.1: Reliable decision making under noise
- o 0.2: ... with context awareness
- o 0.3: ... with prediction

1 – Trustworthy interworking of NEMs in a Team

- 1.0: Orchestrated Team work with maximal utility
- 1.1: ...with sharing of relevant context changes
- 1.2: ...with sharing of relevant predictions

2 – Seamless Deployment of NEMs, NEM Teams

- o 2.0: NEM/NEM Team Lifecycle Management
- 2.1: ...with governed context sharing
- 2.2: ... with governed knowledge building

UMF IN A NUTSHELL CAPABILITY LEVEL 0.0

UMF IN A NUTSHELL CAPABILITY LEVEL 0.1

UMF IN A NUTSHELL CAPABILITY LEVEL 0.2

CAPABILITY LEVEL 1.0

(D).T.Rules:=Decision-in-Group rules

IF KPI i<T i & Promised Utility Increase is the Highest in the Team THEN P:=P+δ

T.Rules:=Team Behaviour Rules

On BOOT send JOIN(TEAM*);

IF Time=Period & KPI i<T i THEN SEND(TEAM*, Utility Promise), etc.

CAPABILITY LEVEL 1.1

(D).(T+C).Rules:=Decision-in-Team rules

IF KPI i<T i & Promised Utility Increase is the Highest in the Team & Ctxt=Allowed THEN P:=P+δ

(T+C).Rules:=Team Behaviour Rules

On BOOT send JOIN(TEAM*);

On Ctxt_Change SEND(TEAM*, Ctxt_Change);

IF Time=Period & KPI_i<T_i THEN SEND(TEAM*, Utility_Promise), etc.

CAPABILITY LEVEL 1.2

(D).(T+C+K).Rules:=Decision-in-Team rules

IF KPI i<T i & Predicted Utility Increase is the Highest in the Team & Ctxt=Allowed THEN P:=P+δ

(T+C+K).Rules:=Team Behaviour Rules

On BOOT send JOIN(TEAM*);

Event

On Ctxt_Change SEND(TEAM*, Ctxt_Change);

On PredictedUtility>Threshold SEND(TEAM*, PredictedUtility);

IF Time=Period & KPI i<T i THEN SEND(TEAM*, Utility Promise), etc.

CAPABILITY LEVEL 2.0

(D).T.G.Rules:=Decision-in-Group under Governance rules

On ROLE_1: (=Team Leader) On JOIN: SEND(Team*, Status), ...

G.Rules:=Governance Rules

GOV-NEM: START(NEM), START(Team); STOP(NEM), STOP(Team), REGISTER, ASSIGN ROLE(), ...

CAPABILITY LEVEL 2.1

(D).(T).(G+C).Rules:=Decision-in-Group under Governance rules

On ROLE_1: (=Team Leader) On JOIN: SEND(Team*, Status), ..., On WATCH(Ctxt): SEND(Team*, Ctxt:=Relevant);

(G+C).Rules:=Governance Rules

GOV-NEM: START(NEM), START(Team); STOP(NEM), STOP(Team),

REGISTER, ASSIGN_ROLE(), WATCH (Context), STOPWATCH (Context), ...

CAPABILITY LEVEL 2.2

(D).(T).(G+C+K).Rules:=Decision-in-Group under Governance rules

On ROLE_1: (=Team Leader) On JOIN: SEND(Team*, Status), ..., On WATCH(Ctxt): SEND(Team*, Ctxt:=Relevant);

On BUILD(Know): SEND(Team*, Build(Know));

(G+C+K).Rules:=Governance Rules

GOV-NEM: START(NEM), START(Team); STOP(NEM), STOP(Team)

REGISTER, ASSIGN_ROLE(), WATCH (Context), STOPWATCH (Context), BUILD(Knowledge), STOPBUILD(Knowledge), ...

Capability=2:+ROLE a set of connected <u>behaviours</u>, <u>rights</u> and <u>obligations</u> as conceptualised by actors in a network situation

WWW.UNIVERSELF-PROJECT.EU