86th IETF – Orlando, USA

draft-asghar-pim-explicit-rpf-vector-01

J. Asghar jasghar@cisco.com
IJ. Wijnands ice@cisco.com
S.Krishnaswawy sowkrish@cisco.com
V. Arya varya@directv.com
Editorial Changes 00 -> 01

• **Section 3.0** – (Update) Added more details on pim-path-vector-tlv requirement in Video Transport Network use case where live-live resiliency model utilized with multicast tree path diversity requirement

• **Section 4.0** – (Update) Condensed figure and text

• **Section 5.0** – (New) Added vector attribute value

• **Section 6.0** – (New) Added handling of conflicting RPF vectors (as in RFC5496)

• **Section 7.0** – (Update) Explicit RPF Vector Attribute TLV Format
Problem Statement

• This draft documents a solution to build multicast trees via an explicitly configured path sent in the PIM join

• Describes a special use of the Reverse Path Forwarding (RPF) Vector TLV as defined in [RPC 5496]
Solution Requirement:
Path Diversity in Live-Live Resiliency

Ingress Demarcation

Mcast Src

(S,G)

PE1

Protection Domain

PE3

(S,G)

Explicit Path Vector TLV

PE2

Native PIM-SSM Network

(S,G)

(E)
Motivation behind this draft

- A stack of RPF vectors can be specified to route PIM Joins semi-explicitly using the neighbor addresses:
 1. However, upon a link/node failure the addresses within a stack of RPF vectors could be unreachable
 2. In this case, router will perform a RIB unicast source reachability lookup and route the PIM Join around the link/node failover and not use the desired RPF vector stack path
 3. In a live-live multicast network or Ring topology, both disjoint multicast trees could be routed along the same path, and not longer be disjoint

- Our draft addresses these issues by proposing a new encoding method that allows to explicitly route PIM Joins using Explicit RPF Vector TLV Stack:
 - draft-asghar-pim-explicit-rpf-vector-01

Maximally Redundant Trees
Solution Example (this draft):
Explicit Path Vector TLV Stack

1. Multicast Source IP: S = 10.0.0.1
 - R2: 12.0.0.1
 - R3: 13.0.0.1
 - R4: 14.0.0.1

Explicitly routed path for PIM Join using RPF vector TLV stack

RIB RPF computed path for PIM Join
Solution (this draft)

- Multicast join path R4->R3->R6->R5->R2->R1, where the multicast JOIN is explicitly routed to the source hop-by-hop using the explicit RPF vector list

\[
[S] \rightarrow (R1) \rightarrow (R2) \rightarrow (R3) \rightarrow (R4) \rightarrow [R]
\]

\begin{center}
\begin{tabular}{c|c|c|c|c|c|c}
 & & & & & & \\
\hline
S & & & & & & R \\
\hline
& & & & & & \\
\hline
| & & & & & & \\
\hline
| & & & & & & \\
\hline
| & & & & & & \\
\hline
| (R5) & & & (R6) & & \\
\hline
\end{tabular}
\end{center}

- (S,G) Join -
Encoding

• RFC-5384 PIM Join Attributes
 – Established IANA registry for join attribute types
 0: RPF Vector TLV [RFC5496]
 “Loose path vector / ERO”
 1: MVPN Join Attribute [RFC6513]
 2: MT-ID Join Attribute [RFC6420]
 3: Pop-Count [RFC6807]
 4 (tentative target): This draft
 “Strict path vector / ERO”
Explicit RPF Vector Attribute TLV Format

<table>
<thead>
<tr>
<th>F</th>
<th>S</th>
<th>Type</th>
<th>Length</th>
<th>Value</th>
</tr>
</thead>
</table>

F bit

The F bit MUST be set to 0. Otherwise there could be loops.

S bit

Bottom of Stack. If this bit is set then this is the last TLV in the stack.

Type

The Vector Attribute type is 4.

Length

Length depending on Address Family of Encoded-Unicast address.

Value

Encoded-Unicast address. For IPv6, this should be a unique global address and NOT link-local.
Moving forward

• Looking for your feedback