
Coupled congestion control���
for RTP media	



draft-welzl-rmcat-coupled-cc-00 (01)	



1	
  

RMCAT,	
  86th	
  IETF	
  Mee0ng	
  
11.	
  11.	
  2012	
  Michael Welzl	



michawe@ifi.uio.no	





Context	
  

•  Addresses	
  “iden/fying	
  and	
  controlling	
  groups	
  of	
  flows”	
  
–  “Iden/fying”	
  trivial	
  for	
  some	
  rtcweb	
  flows,	
  else	
  requires	
  Shared	
  
BoDleneck	
  Detec/on	
  (SBD)	
  –	
  working	
  on	
  it,	
  hopefully	
  first	
  
draK	
  @	
  IETF87	
  

•  Has	
  been	
  tried	
  in	
  the	
  past	
  (CM	
  (RFC	
  3124),	
  RFC	
  2140	
  )	
  –	
  
what	
  has	
  gone	
  wrong?	
  
–  Not	
  able	
  to	
  address	
  the	
  “iden/fying”	
  part	
  
–  Too	
  hard	
  to	
  implement	
  
(note:	
  easy-­‐to-­‐implement,	
  non-­‐cri/cal	
  parts	
  of	
  RFC	
  2140	
  are	
  
actually	
  implemented	
  AFAIK,	
  e.g.	
  sshthresh	
  caching	
  (+	
  sharing?))	
  

⇒ Try	
  to	
  make	
  it	
  as	
  easy	
  to	
  implement	
  +	
  simple	
  as	
  possible	
   2	
  



“Flow	
  State	
  Exchange”	
  (FSE)	
  
•  The	
  result	
  of	
  searching	
  for	
  minimum-­‐necessary-­‐
standardiza/on:	
  passive	
  storage,	
  only	
  define	
  what	
  
goes	
  in	
  /	
  out	
  +	
  what	
  to	
  do	
  with	
  the	
  informa/on	
  
–  So	
  far,	
  sender-­‐side	
  only	
  
–  Could	
  reside	
  in	
  a	
  single	
  app	
  (e.g.	
  browser)	
  and/or	
  in	
  the	
  OS	
  

CM 

Stream 1 

Stream 2 

Stream 1 

Stream 2 

FSE 

Tradi/onal	
  CM	
   FSE	
  based	
  flow	
  
coordina/on	
  
For	
  some	
  rtcweb	
  
flows	
  (trivial	
  SBD)	
  

SBD 

Stream 1 

Stream 2 

FSE 

FSE	
  based	
  flow	
  coordina/on	
  



“Flow	
  State	
  Exchange”	
  (FSE)	
  	
  /2	
  

•  Flows	
  update	
  it	
  when	
  they	
  start	
  and	
  stop	
  
•  Flows	
  query+update	
  whenever	
  they	
  update	
  their	
  rate	
  

–  flow’s	
  used	
  rate	
  =	
  UPDATE(CC-­‐calculated	
  rate	
  (CR),	
  
desired	
  rate	
  (DR))	
  	
  

4	
  

#	
   FG	
   P	
   CR	
   DR	
   S_CR	
   Rate	
  

1	
   1	
   1	
   8	
   2	
   10	
   2	
  

2	
   1	
   0.5	
   3	
   3	
   11	
   9	
  

Stored	
  
Example	
  state:	
  



Algorithm	
  in	
  the	
  draK	
  

•  Just	
  an	
  example	
  –	
  could	
  be	
  changed,	
  as	
  long	
  as	
  the	
  same	
  
is	
  used	
  for	
  all	
  flows	
  
–  Perhaps	
  best	
  to	
  implement	
  with	
  the	
  FSE,	
  not	
  with	
  each	
  flow	
  

•  Goals	
  of	
  the	
  example	
  algorithm:	
  
–  Realize	
  fairness	
  with	
  priori/es	
  
–  Good	
  capacity	
  usage:	
  always	
  use	
  all	
  the	
  available	
  bandwidth	
  
that	
  conges/on	
  controls	
  have	
  found	
  

–  Reduce	
  delay:	
  N	
  flows	
  should	
  not	
  probe	
  N	
  /mes	
  
–  Let	
  greedy	
  flows	
  immediately	
  use	
  unused	
  bandwidth	
  of	
  non-­‐
greedy	
  or	
  terminated	
  ones	
  

5	
  



Example	
  using	
  older	
  variant	
  of	
  the	
  alg.:	
  
2	
  vic	
  instances	
  w	
  /	
  TFRC	
  +	
  FSE	
  

6	
  

2

III. DEMONSTRATION: APPLYING THE FSE TO VIC

Our demonstration uses a standalone implementation of the
FSE, and two instances of the open source video conferencing
tool “vic”3 that we have extended to talk to the FSE using Unix
domain sockets. The vic variant that we use includes TFRC [5]
congestion control (implemented and tested by Soo-Hyun Choi
for his Ph.D. thesis [6]). In our changed version, vic stores the
TFRC-calculated rate in the FSE and then determines its actual
rate via the FSE as explained in the previous section. Our
experiments are carried out with a single physical host, using
an instance of VirtualBox with Linux for the sender, running
two instances of vic for the senders as well as an FSE, and
an instance of VirtualBox with Linux for the receiver, running
two instances of vic for the receivers. The two VirtualBox
instances are logically interconnected on our Mac OS X host
system, and the outgoing interface of the sender is set to have
a maximum rate of 1 Mbit/s and introduce a propagation delay
of 50 ms using tc / netem.

Here, we present some results from a test where we have
configured the FSE to let the two flows share the bandwidth
equally, similar to what TFRC would automatically converge
to. This helps to highlight the impact of merely using an FSE
without manually influencing the fairness between flows. The
effect of the latter is more pronounced, and we therefore intend
to show it in our live demonstration. RMCAT is meant for
interactive real-time media, and vic supports cameras, which
we plan to use for the live demonstration. To make the test
shown here repeatable, however, we have made vic play a file
(the common “foreman” test sequence), causing it to adjust the
frame rate, which translates into the received video slowing
down in the face of congestion. Figure 1 shows the sending
rates of the two sender-side vic processes without the FSE,
and Figure 2 shows their sending rates with the FSE.

The test ran for two minutes. Process 1 transmitted data
from the start, whereas process 2 was started after 30 seconds
and left to run for one minute. Clearly, Figure 2 shows less
rate fluctuations than Figure 1 in the period when process 2
was active. We can also see that process 2 needed no start-up
phase with the FSE – it directly jumped to the correct rate,
determined by process 1. In doing so, it also did not have to
exceed the link capacity, which created delay and eventually
caused packet loss in the case without the FSE. On average,
the delay experienced measured with ping throughout the test
was 19% higher in the case without the FSE.

IV. ACKNOWLEDGEMENTS

This work is partially supported by the European Union
through the FP7-ICT project RITE under contract number
317700.

REFERENCES

[1] B. Y. Muhammad Murtaza Yousaf, Michael Welzl, “Accurate shared
bottleneck detection based on svd and outlier detection,” University of
Innsbruck, Institute of Computer Science, Tech. Rep. DPS NSG Technical
Report 1, August 2008.

3http://mediatools.cs.ucl.ac.uk/nets/mmedia/

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20  40  60  80  100  120

Se
nd

in
g 

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 1. Sending rates of two separate vic processes using TFRC across a
1 Mbit/s, 50 ms link.

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20  40  60  80  100  120

Se
nd

in
g 

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 2. Sending rates of two vic processes across a 1 Mbit/s, 50 ms link when
TFRC congestion controls are coupled via the FSE.

[2] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Network Protocols (ICNP), 2011 19th

IEEE International Conference on, oct. 2011, pp. 341 –352.
[3] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated

congestion management architecture for internet hosts,” in Proceedings

of the conference on Applications, technologies, architectures, and

protocols for computer communication, ser. SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 175–187. [Online]. Available:
http://doi.acm.org/10.1145/316188.316220

[4] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC
3124 (Proposed Standard), Internet Engineering Task Force, Jun. 2001.
[Online]. Available: http://www.ietf.org/rfc/rfc3124.txt

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 5348 (Proposed
Standard), Internet Engineering Task Force, Sep. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5348.txt

[6] S.-H. Choi, “Congestion control for real-time interactive multimedia
streams,” Ph.D. dissertation, University College London, London, Sep.
2010. [Online]. Available: http://thesis.hackerslab.eu/

2

III. DEMONSTRATION: APPLYING THE FSE TO VIC

Our demonstration uses a standalone implementation of the
FSE, and two instances of the open source video conferencing
tool “vic”3 that we have extended to talk to the FSE using Unix
domain sockets. The vic variant that we use includes TFRC [5]
congestion control (implemented and tested by Soo-Hyun Choi
for his Ph.D. thesis [6]). In our changed version, vic stores the
TFRC-calculated rate in the FSE and then determines its actual
rate via the FSE as explained in the previous section. Our
experiments are carried out with a single physical host, using
an instance of VirtualBox with Linux for the sender, running
two instances of vic for the senders as well as an FSE, and
an instance of VirtualBox with Linux for the receiver, running
two instances of vic for the receivers. The two VirtualBox
instances are logically interconnected on our Mac OS X host
system, and the outgoing interface of the sender is set to have
a maximum rate of 1 Mbit/s and introduce a propagation delay
of 50 ms using tc / netem.

Here, we present some results from a test where we have
configured the FSE to let the two flows share the bandwidth
equally, similar to what TFRC would automatically converge
to. This helps to highlight the impact of merely using an FSE
without manually influencing the fairness between flows. The
effect of the latter is more pronounced, and we therefore intend
to show it in our live demonstration. RMCAT is meant for
interactive real-time media, and vic supports cameras, which
we plan to use for the live demonstration. To make the test
shown here repeatable, however, we have made vic play a file
(the common “foreman” test sequence), causing it to adjust the
frame rate, which translates into the received video slowing
down in the face of congestion. Figure 1 shows the sending
rates of the two sender-side vic processes without the FSE,
and Figure 2 shows their sending rates with the FSE.

The test ran for two minutes. Process 1 transmitted data
from the start, whereas process 2 was started after 30 seconds
and left to run for one minute. Clearly, Figure 2 shows less
rate fluctuations than Figure 1 in the period when process 2
was active. We can also see that process 2 needed no start-up
phase with the FSE – it directly jumped to the correct rate,
determined by process 1. In doing so, it also did not have to
exceed the link capacity, which created delay and eventually
caused packet loss in the case without the FSE. On average,
the delay experienced measured with ping throughout the test
was 19% higher in the case without the FSE.

IV. ACKNOWLEDGEMENTS

This work is partially supported by the European Union
through the FP7-ICT project RITE under contract number
317700.

REFERENCES

[1] B. Y. Muhammad Murtaza Yousaf, Michael Welzl, “Accurate shared
bottleneck detection based on svd and outlier detection,” University of
Innsbruck, Institute of Computer Science, Tech. Rep. DPS NSG Technical
Report 1, August 2008.

3http://mediatools.cs.ucl.ac.uk/nets/mmedia/

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20  40  60  80  100  120

Se
nd

in
g 

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 1. Sending rates of two separate vic processes using TFRC across a
1 Mbit/s, 50 ms link.

 0

 200000

 400000

 600000

 800000

 1e+06

 0  20  40  60  80  100  120

Se
nd

in
g 

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 2. Sending rates of two vic processes across a 1 Mbit/s, 50 ms link when
TFRC congestion controls are coupled via the FSE.

[2] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Network Protocols (ICNP), 2011 19th

IEEE International Conference on, oct. 2011, pp. 341 –352.
[3] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated

congestion management architecture for internet hosts,” in Proceedings

of the conference on Applications, technologies, architectures, and

protocols for computer communication, ser. SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 175–187. [Online]. Available:
http://doi.acm.org/10.1145/316188.316220

[4] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC
3124 (Proposed Standard), Internet Engineering Task Force, Jun. 2001.
[Online]. Available: http://www.ietf.org/rfc/rfc3124.txt

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 5348 (Proposed
Standard), Internet Engineering Task Force, Sep. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5348.txt

[6] S.-H. Choi, “Congestion control for real-time interactive multimedia
streams,” Ph.D. dissertation, University College London, London, Sep.
2010. [Online]. Available: http://thesis.hackerslab.eu/

Without	
   With	
  



Current	
  state	
  of	
  things	
  

•  Playing	
  with	
  the	
  current	
  algorithm	
  
– Working	
  on	
  2	
  main	
  FSE	
  problems:	
  
1.  A	
  flow	
  is	
  told	
  to	
  use	
  a	
  rate	
  that	
  is	
  not	
  what	
  the	
  

conges/on	
  controller	
  has	
  determined	
  
•  Smaller:	
  can	
  cc.	
  cope	
  with	
  non-­‐greedy	
  sources?	
  

(note:	
  on-­‐the-­‐wire	
  effect	
  probably	
  close	
  to	
  greedy)	
  
•  Larger:	
  really	
  unusual	
  
⇒ Need	
  to	
  check	
  conges/on	
  controls	
  one	
  by	
  one	
  

2.  Problems	
  could	
  arise	
  when	
  flows	
  are	
  highly	
  
asynchronous	
  (async.	
  RTTs,	
  ..)	
  

•  Nega/ve	
  impact	
  can	
  certainly	
  be	
  bounded	
   7	
  



Really	
  only	
  on	
  the	
  sender	
  side?	
  
•  Reducing	
  feedback	
  frequency	
  would	
  require	
  a	
  message	
  to	
  the	
  

receiver	
  based	
  on	
  informa/on	
  from	
  the	
  FSE	
  (similar	
  to	
  async.	
  RTT)	
  
•  Shared	
  BoDleneck	
  Detec/on	
  needs	
  signaling	
  of	
  measurement	
  results	
  

–  A	
  tricky	
  problem	
  by	
  itself…	
  but	
  not	
  fully	
  solving	
  it	
  yields	
  false	
  nega/ves,	
  
which	
  are	
  not	
  too	
  problema/c	
  	
  (limits	
  FSE	
  benefits)	
  

8	
  

H1	
   H3	
  

H2	
  



Thank	
  you!	
  
	
  

Ques/ons?	
  


