
Coupled congestion control���
for RTP media	

draft-welzl-rmcat-coupled-cc-00 (01)	

1	

RMCAT,	 86th	 IETF	 Mee0ng	
11.	 11.	 2012	 Michael Welzl	

michawe@ifi.uio.no	

Context	

•  Addresses	 “iden/fying	 and	 controlling	 groups	 of	 flows”	
–  “Iden/fying”	 trivial	 for	 some	 rtcweb	 flows,	 else	 requires	 Shared	
BoDleneck	 Detec/on	 (SBD)	 –	 working	 on	 it,	 hopefully	 first	
draK	 @	 IETF87	

•  Has	 been	 tried	 in	 the	 past	 (CM	 (RFC	 3124),	 RFC	 2140)	 –	
what	 has	 gone	 wrong?	
–  Not	 able	 to	 address	 the	 “iden/fying”	 part	
–  Too	 hard	 to	 implement	
(note:	 easy-‐to-‐implement,	 non-‐cri/cal	 parts	 of	 RFC	 2140	 are	
actually	 implemented	 AFAIK,	 e.g.	 sshthresh	 caching	 (+	 sharing?))	

⇒ Try	 to	 make	 it	 as	 easy	 to	 implement	 +	 simple	 as	 possible	 2	

“Flow	 State	 Exchange”	 (FSE)	
•  The	 result	 of	 searching	 for	 minimum-‐necessary-‐
standardiza/on:	 passive	 storage,	 only	 define	 what	
goes	 in	 /	 out	 +	 what	 to	 do	 with	 the	 informa/on	
–  So	 far,	 sender-‐side	 only	
–  Could	 reside	 in	 a	 single	 app	 (e.g.	 browser)	 and/or	 in	 the	 OS	

CM

Stream 1

Stream 2

Stream 1

Stream 2

FSE

Tradi/onal	 CM	 FSE	 based	 flow	
coordina/on	
For	 some	 rtcweb	
flows	 (trivial	 SBD)	

SBD

Stream 1

Stream 2

FSE

FSE	 based	 flow	 coordina/on	

“Flow	 State	 Exchange”	 (FSE)	 	 /2	

•  Flows	 update	 it	 when	 they	 start	 and	 stop	
•  Flows	 query+update	 whenever	 they	 update	 their	 rate	

–  flow’s	 used	 rate	 =	 UPDATE(CC-‐calculated	 rate	 (CR),	
desired	 rate	 (DR))	 	

4	

#	 FG	 P	 CR	 DR	 S_CR	 Rate	

1	 1	 1	 8	 2	 10	 2	

2	 1	 0.5	 3	 3	 11	 9	

Stored	
Example	 state:	

Algorithm	 in	 the	 draK	

•  Just	 an	 example	 –	 could	 be	 changed,	 as	 long	 as	 the	 same	
is	 used	 for	 all	 flows	
–  Perhaps	 best	 to	 implement	 with	 the	 FSE,	 not	 with	 each	 flow	

•  Goals	 of	 the	 example	 algorithm:	
–  Realize	 fairness	 with	 priori/es	
–  Good	 capacity	 usage:	 always	 use	 all	 the	 available	 bandwidth	
that	 conges/on	 controls	 have	 found	

–  Reduce	 delay:	 N	 flows	 should	 not	 probe	 N	 /mes	
–  Let	 greedy	 flows	 immediately	 use	 unused	 bandwidth	 of	 non-‐
greedy	 or	 terminated	 ones	

5	

Example	 using	 older	 variant	 of	 the	 alg.:	
2	 vic	 instances	 w	 /	 TFRC	 +	 FSE	

6	

2

III. DEMONSTRATION: APPLYING THE FSE TO VIC

Our demonstration uses a standalone implementation of the
FSE, and two instances of the open source video conferencing
tool “vic”3 that we have extended to talk to the FSE using Unix
domain sockets. The vic variant that we use includes TFRC [5]
congestion control (implemented and tested by Soo-Hyun Choi
for his Ph.D. thesis [6]). In our changed version, vic stores the
TFRC-calculated rate in the FSE and then determines its actual
rate via the FSE as explained in the previous section. Our
experiments are carried out with a single physical host, using
an instance of VirtualBox with Linux for the sender, running
two instances of vic for the senders as well as an FSE, and
an instance of VirtualBox with Linux for the receiver, running
two instances of vic for the receivers. The two VirtualBox
instances are logically interconnected on our Mac OS X host
system, and the outgoing interface of the sender is set to have
a maximum rate of 1 Mbit/s and introduce a propagation delay
of 50 ms using tc / netem.

Here, we present some results from a test where we have
configured the FSE to let the two flows share the bandwidth
equally, similar to what TFRC would automatically converge
to. This helps to highlight the impact of merely using an FSE
without manually influencing the fairness between flows. The
effect of the latter is more pronounced, and we therefore intend
to show it in our live demonstration. RMCAT is meant for
interactive real-time media, and vic supports cameras, which
we plan to use for the live demonstration. To make the test
shown here repeatable, however, we have made vic play a file
(the common “foreman” test sequence), causing it to adjust the
frame rate, which translates into the received video slowing
down in the face of congestion. Figure 1 shows the sending
rates of the two sender-side vic processes without the FSE,
and Figure 2 shows their sending rates with the FSE.

The test ran for two minutes. Process 1 transmitted data
from the start, whereas process 2 was started after 30 seconds
and left to run for one minute. Clearly, Figure 2 shows less
rate fluctuations than Figure 1 in the period when process 2
was active. We can also see that process 2 needed no start-up
phase with the FSE – it directly jumped to the correct rate,
determined by process 1. In doing so, it also did not have to
exceed the link capacity, which created delay and eventually
caused packet loss in the case without the FSE. On average,
the delay experienced measured with ping throughout the test
was 19% higher in the case without the FSE.

IV. ACKNOWLEDGEMENTS

This work is partially supported by the European Union
through the FP7-ICT project RITE under contract number
317700.

REFERENCES

[1] B. Y. Muhammad Murtaza Yousaf, Michael Welzl, “Accurate shared
bottleneck detection based on svd and outlier detection,” University of
Innsbruck, Institute of Computer Science, Tech. Rep. DPS NSG Technical
Report 1, August 2008.

3http://mediatools.cs.ucl.ac.uk/nets/mmedia/

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120

Se
nd

in
g

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 1. Sending rates of two separate vic processes using TFRC across a
1 Mbit/s, 50 ms link.

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120

Se
nd

in
g

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 2. Sending rates of two vic processes across a 1 Mbit/s, 50 ms link when
TFRC congestion controls are coupled via the FSE.

[2] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Network Protocols (ICNP), 2011 19th

IEEE International Conference on, oct. 2011, pp. 341 –352.
[3] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated

congestion management architecture for internet hosts,” in Proceedings

of the conference on Applications, technologies, architectures, and

protocols for computer communication, ser. SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 175–187. [Online]. Available:
http://doi.acm.org/10.1145/316188.316220

[4] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC
3124 (Proposed Standard), Internet Engineering Task Force, Jun. 2001.
[Online]. Available: http://www.ietf.org/rfc/rfc3124.txt

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 5348 (Proposed
Standard), Internet Engineering Task Force, Sep. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5348.txt

[6] S.-H. Choi, “Congestion control for real-time interactive multimedia
streams,” Ph.D. dissertation, University College London, London, Sep.
2010. [Online]. Available: http://thesis.hackerslab.eu/

2

III. DEMONSTRATION: APPLYING THE FSE TO VIC

Our demonstration uses a standalone implementation of the
FSE, and two instances of the open source video conferencing
tool “vic”3 that we have extended to talk to the FSE using Unix
domain sockets. The vic variant that we use includes TFRC [5]
congestion control (implemented and tested by Soo-Hyun Choi
for his Ph.D. thesis [6]). In our changed version, vic stores the
TFRC-calculated rate in the FSE and then determines its actual
rate via the FSE as explained in the previous section. Our
experiments are carried out with a single physical host, using
an instance of VirtualBox with Linux for the sender, running
two instances of vic for the senders as well as an FSE, and
an instance of VirtualBox with Linux for the receiver, running
two instances of vic for the receivers. The two VirtualBox
instances are logically interconnected on our Mac OS X host
system, and the outgoing interface of the sender is set to have
a maximum rate of 1 Mbit/s and introduce a propagation delay
of 50 ms using tc / netem.

Here, we present some results from a test where we have
configured the FSE to let the two flows share the bandwidth
equally, similar to what TFRC would automatically converge
to. This helps to highlight the impact of merely using an FSE
without manually influencing the fairness between flows. The
effect of the latter is more pronounced, and we therefore intend
to show it in our live demonstration. RMCAT is meant for
interactive real-time media, and vic supports cameras, which
we plan to use for the live demonstration. To make the test
shown here repeatable, however, we have made vic play a file
(the common “foreman” test sequence), causing it to adjust the
frame rate, which translates into the received video slowing
down in the face of congestion. Figure 1 shows the sending
rates of the two sender-side vic processes without the FSE,
and Figure 2 shows their sending rates with the FSE.

The test ran for two minutes. Process 1 transmitted data
from the start, whereas process 2 was started after 30 seconds
and left to run for one minute. Clearly, Figure 2 shows less
rate fluctuations than Figure 1 in the period when process 2
was active. We can also see that process 2 needed no start-up
phase with the FSE – it directly jumped to the correct rate,
determined by process 1. In doing so, it also did not have to
exceed the link capacity, which created delay and eventually
caused packet loss in the case without the FSE. On average,
the delay experienced measured with ping throughout the test
was 19% higher in the case without the FSE.

IV. ACKNOWLEDGEMENTS

This work is partially supported by the European Union
through the FP7-ICT project RITE under contract number
317700.

REFERENCES

[1] B. Y. Muhammad Murtaza Yousaf, Michael Welzl, “Accurate shared
bottleneck detection based on svd and outlier detection,” University of
Innsbruck, Institute of Computer Science, Tech. Rep. DPS NSG Technical
Report 1, August 2008.

3http://mediatools.cs.ucl.ac.uk/nets/mmedia/

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120

Se
nd

in
g

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 1. Sending rates of two separate vic processes using TFRC across a
1 Mbit/s, 50 ms link.

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100 120

Se
nd

in
g

ra
te

 (b
its

/s
)

Time (s)

Process 1
Process 2

Fig. 2. Sending rates of two vic processes across a 1 Mbit/s, 50 ms link when
TFRC congestion controls are coupled via the FSE.

[2] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic window coupling for
multipath congestion control,” in Network Protocols (ICNP), 2011 19th

IEEE International Conference on, oct. 2011, pp. 341 –352.
[3] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated

congestion management architecture for internet hosts,” in Proceedings

of the conference on Applications, technologies, architectures, and

protocols for computer communication, ser. SIGCOMM ’99. New
York, NY, USA: ACM, 1999, pp. 175–187. [Online]. Available:
http://doi.acm.org/10.1145/316188.316220

[4] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC
3124 (Proposed Standard), Internet Engineering Task Force, Jun. 2001.
[Online]. Available: http://www.ietf.org/rfc/rfc3124.txt

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP Friendly
Rate Control (TFRC): Protocol Specification,” RFC 5348 (Proposed
Standard), Internet Engineering Task Force, Sep. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5348.txt

[6] S.-H. Choi, “Congestion control for real-time interactive multimedia
streams,” Ph.D. dissertation, University College London, London, Sep.
2010. [Online]. Available: http://thesis.hackerslab.eu/

Without	 With	

Current	 state	 of	 things	

•  Playing	 with	 the	 current	 algorithm	
– Working	 on	 2	 main	 FSE	 problems:	
1.  A	 flow	 is	 told	 to	 use	 a	 rate	 that	 is	 not	 what	 the	

conges/on	 controller	 has	 determined	
•  Smaller:	 can	 cc.	 cope	 with	 non-‐greedy	 sources?	

(note:	 on-‐the-‐wire	 effect	 probably	 close	 to	 greedy)	
•  Larger:	 really	 unusual	
⇒ Need	 to	 check	 conges/on	 controls	 one	 by	 one	

2.  Problems	 could	 arise	 when	 flows	 are	 highly	
asynchronous	 (async.	 RTTs,	 ..)	

•  Nega/ve	 impact	 can	 certainly	 be	 bounded	 7	

Really	 only	 on	 the	 sender	 side?	
•  Reducing	 feedback	 frequency	 would	 require	 a	 message	 to	 the	

receiver	 based	 on	 informa/on	 from	 the	 FSE	 (similar	 to	 async.	 RTT)	
•  Shared	 BoDleneck	 Detec/on	 needs	 signaling	 of	 measurement	 results	

–  A	 tricky	 problem	 by	 itself…	 but	 not	 fully	 solving	 it	 yields	 false	 nega/ves,	
which	 are	 not	 too	 problema/c	 	 (limits	 FSE	 benefits)	

8	

H1	 H3	

H2	

Thank	 you!	
	

Ques/ons?	

