On the Use of RTCP Feedback for Unicast Multimedia Congestion Control

draft-perkins-rmcat-rtp-cc-feedback-00

Colin Perkins
Motivation

- Transport protocol provides a feedback loop
- Dynamics of congestion control depend on rate of feedback, and type of information returned
- RTCP provides a feedback channel for RTP-based applications – what sort of feedback can it provide?
Per-packet Feedback

- Per-packet feedback is ideal for congestion control
 - Effective ACK-clocking
 - Fast feedback on changes in RTT

- RTCP is not designed for per-packet feedback
 - RTCP reporting interval could be configured to match media data rate, but randomisation ensures control packets don’t align with data packets
 - Reporting interval varies based on number of participants, number of active senders, average RTCP packet size, session bandwidth, and bandwidth fraction allocated to RTCP
 - Packet timing randomised ±50% to avoid synchronisation; reconsideration also impacts timing
 - RTCP packets are large, and sent as separate packets to RTP data – there is no mechanism to piggyback data and control packets
 - Media is not continually bi-directional in many scenarios – RTP header extensions don’t work to piggyback feedback if there is no returning RTP flow
 - Potentially excessive overhead, depending on packet rate
Per-frame Feedback

- Consider simple WebRTC scenario:
 - One sender, one receiver, unicast video call
 - Four RTP flows (two audio and two video), all active essentially continually → four SSRCs in a single RTP session
 - Each SSRC sends RTCP reports for all other SSRCs

- RTCP reporting interval reduces to \(rtcp_{interval} = \frac{avg_rtcp_size \times n}{rtcp_bw} \)
 - \(n = 4 \) SSRCs in the session
 - Configured \(rtcp_bw \) in octets per second
 - \(avg_rtcp_size = 156 \) octets

- To report per frame, for 30fps video, want \(rtcp_interval = \sim 0.033 \) seconds
 - RTP/AVPF allows RTCP reporting intervals <5 seconds
 - \(rtcp_bw = \frac{avg_rtcp_size \times n}{rtcp_interval} = 156 \times 4 / 0.033 = 18,720 \) octets per second
 - If \(rtcp_bw \) configured as 5% of session bandwidth, then session bandwidth = 2.8Mbps (~1.4Mbps per video stream)

- If session bandwidth \(\geq 2.8 \)Mbps, all four SSRCs can report on every frame of video sent on average
 - Each report will convey RTT, packet sent, fraction lost, total lost, highest seqnum received, jitter – sufficient for congestion control?
Per-frame Feedback (cont’d)

• Assumptions: compound RTCP, cross-reporting
 • Ignores Jonathan Lennox’s optimisations to reduce RTCP cross-reporting
 • Ignores non-compound RTCP packets
 • Sending audio and video in separate RTP sessions, with different session bandwidth, would roughly half required session bandwidth for full reports

• If regular RTCP reports are not sufficient, can send additional RTCP packets in the compound packet
 • E.g., if an extra 20 octets feedback sent in each compound RTCP packet, required session bandwidth increases to 3.2Mbps for reporting per-frame at 30fps
Per-RTT Feedback

- Some congestion control protocols send feedback per RTT
 - RTT is usually longer than inter-frame interval
 - Arguments on previous slides apply, will give lower session bandwidth
Discussion

- RTCP can be suitable for congestion feedback
 - Not effective for per-packet feedback
 - Initial analysis: RTCP seems suitable for per-frame or per-RTT feedback in moderately high-quality sessions
 - Detailed analysis of other RTP topologies and scenarios needed

- If intended to work with RTP and RTCP as currently specified, congestion control should be designed to work with feedback per-video-frame or per-RTT, not per-packet