FEC FRAME for WebRTC

Giri Mandyam Qualcomm Innovation Center

draft-mandyam-rtcweb-fecframe-00 Co authors: M. Luby, T. Stockhammer, C. Foisy

Introduction

- IETF FEC (Forward Error Correction)
 Framework encapsulated the application of FEC to streaming protocols
 - RFC 6363 describes framework
 - RFC 6364 provides SDP semantics
- FEC FRAME is readily applicable to WebRTC

FEC streaming

- There are multiple standardized FEC codes for streaming
 - Reed-Solomon, Raptor, RaptorQ, LDPC
- FEC is used to protect against packet loss
 - Partition source stream into source blocks of data
 - Partitioning can be done on the fly as the stream becomes available
 - Encoding block = source block + FEC repair
 - FEC repair generated from the source block to provide protection against packet loss
 - Send encoding block for a source block
 - Based on redundancy in sent encoding block, receiver may be able to recover source block when there is packet loss

FEC streaming trade-offs

- Smaller source blocks → Better end-to-end latency
- Larger source blocks → Better recovery performance
- Less FEC repair → Less bandwidth
- More FEC repair → Better recovery performance

FEC streaming example

- 2 Mbps H.264 streaming session
- RaptorQ code (RFC 6682) or Reed-Solomon (RFC 6865)

Target failure to recover source block = 10⁻⁶

Packet Loss	Source block stream duration*	Encoding stream rate
1 %	46.08 ms	2.75 Mbps
5 %	46.08 ms	3.50 Mbps
10 %	46.08 ms	4.00 Mbps
1 %	97.92 ms	2.47 Mbps
5 %	97.92 ms	2.94 Mbps
10 %	97.92 ms	3.29 Mbps

^{* =} source block size/source streaming rate this is a lower bound on, and indicative of, end-to-end latency

What is Requested

- FEC be allowed for WebRTC sessions when both endpoints support
 - Subject to negotiation between endpoints
 - All SDP semantics for WebRTC be compatible with FEC negotiation
- draft-mandyam-rtcweb-fecframe-00 become an RTCWEB Working Group draft