RTCWeb Data Channel Management
draft-marcon-rtcweb-data-channel-management-00
Problem:

• For best interoperability, data channel setup should be negotiated through SDP offer/answer always

• But then:
 – opening a data channel would each time trigger SDP renegotiation
 – opening a high number of data channels could cause out-of-band scalability problems
 – data channel setup would anyway be slower than an in-band data channel control protocol
Solution: Figure
Solution (1/3)

Concept of "data channel configuration"

- A set of data channel properties that can be shared by multiple data channels
 - order of delivery, reliability, subprotocol, [PPID ?]
- Each property is generic: its name/value does not matter
- When at least one property name or value differs, the configuration differs

1. Creating a data channel [& configuration]

- The application handles individual data channels and is unaware of configurations
- The application creates a data channel "as usual" and provides as distinct arguments:
 'configuration properties' and 'data channel-specific properties'
- The agent detects if the passed configuration properties match an existing configuration
- If not, the agent creates a new configuration and triggers SDP renegotiation
- The resulting (existing or new) configuration ID is assigned to the data channel
- The data channel has no SCTP stream number yet
- Relationships: Configuration → 0..N Data Channels; Data Channel → 1 Configuration
Solution (2/3)

2. **Negotiating out-of-band the data channel configurations**
 - negotiation only triggered when the app creating a data channel happens to create a new configuration
 - the m-line describing the SCTP association is followed by 1 attribute per configuration
 - configuration ID, followed by configuration properties (order, reliability, subprotocol...)
 - negotiated config properties could be assymetric in offer/answer
 - *(to be deleted: the peer must create one data channel per new offered configuration)*

3. **Opening data channels in-band**
 - the SCTP stream number is chosen by the first endpoint sending a msg on the channel
 - no properties are carried in-band, only the configuration ID
 - so only data channels with properties matching a negotiated config can be created
 - an endpoint opens a data channel by signaling "somehow" to the peer: {SCTP stream number, configuration ID}
 - the peer on its side opens either an existing data channel (with same config ID but no SCTP stream number) or a new data channel
 - the peer applies to the data channel the properties given by Configuration ID
Solution (3/3)

METHODS for signaling in-band the data channel info { SCTP stream number, configuration ID}

• METHOD detailed in draft 00
 – The agent includes in each user message a 2-byte header signaling: Configuration ID and (then why not) data framing type - text/binary
 – A data channel is opened by the first application message received on this channel

• OTHER METHODS (avoiding data framing issues discussed on the list)
 – A convention by which the peer can infer Configuration ID from SCTP Stream Identifier, like:
 • The 16-bit SCTP Stream Identifier is split into: Configuration ID (N bits) and Data Channel Instance ID (M bits)
 • The SCTP association is initialized with 65535 inbound & outbound streams
 – An in-band protocol sending the [list of] [SCTP stream number &] configuration ID to the peer
Benefits & Issues

BENEFITS
• Interoperability ensured by SDP Offer/Answer exchange
• Extensibility of config properties
 – when a new property is added, no need to extend an in-band protocol
 – and no change of processing as properties are generic
• Possible assymetry of offer/answer negotiated properties
• Scalability of out-of-band negotiation
 – small SDP footprint, even for a high number of data channels (of same usage)
 – SDP renegotiation rarely required
• Scalability of in-band data channel creation
• Deterministic selection of properties for data channels created in-band
• No/minimal impact on existing API

ISSUES
• Properties unique to a data channel cannot be transmitted to the peer
 – e.g. labels